Parameters that configure the active learning pipeline. Active learning will
label the data incrementally by several iterations. For every iteration, it
will select a batch of data based on the sampling strategy.
Request message for
[MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1beta1.MetadataService.AddContextArtifactsAndExecutions].
Response message for
[MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1beta1.MetadataService.AddContextArtifactsAndExecutions].
Request message for
[MetadataService.AddContextChildren][google.cloud.aiplatform.v1beta1.MetadataService.AddContextChildren].
Response message for
[MetadataService.AddContextChildren][google.cloud.aiplatform.v1beta1.MetadataService.AddContextChildren].
Request message for
[MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1beta1.MetadataService.AddExecutionEvents].
Response message for
[MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1beta1.MetadataService.AddExecutionEvents].
Request message for
[VizierService.AddTrialMeasurement][google.cloud.aiplatform.v1beta1.VizierService.AddTrialMeasurement].
Used to assign specific AnnotationSpec to a particular area of a DataItem or
the whole part of the DataItem.
Identifies a concept with which DataItems may be annotated with.
The generic reusable api auth config.
Instance of a general artifact.
Metadata information for
[NotebookService.AssignNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.AssignNotebookRuntime].
Request message for
[NotebookService.AssignNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.AssignNotebookRuntime].
Attribution that explains a particular prediction output.
Auth configuration to run the extension.
A description of resources that to large degree are decided by Vertex AI,
and require only a modest additional configuration.
Each Model supporting these resources documents its specific guidelines.
The metric specification that defines the target resource utilization
(CPU utilization, accelerator’s duty cycle, and so on) for calculating the
desired replica count.
The storage details for Avro input content.
Runtime operation information for
[PipelineService.BatchCancelPipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.BatchCancelPipelineJobs].
Request message for
[PipelineService.BatchCancelPipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.BatchCancelPipelineJobs].
Response message for
[PipelineService.BatchCancelPipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.BatchCancelPipelineJobs].
Details of operations that perform batch create Features.
Request message for
[FeaturestoreService.BatchCreateFeatures][google.cloud.aiplatform.v1beta1.FeaturestoreService.BatchCreateFeatures].
Response message for
[FeaturestoreService.BatchCreateFeatures][google.cloud.aiplatform.v1beta1.FeaturestoreService.BatchCreateFeatures].
Request message for
[TensorboardService.BatchCreateTensorboardRuns][google.cloud.aiplatform.v1beta1.TensorboardService.BatchCreateTensorboardRuns].
Response message for
[TensorboardService.BatchCreateTensorboardRuns][google.cloud.aiplatform.v1beta1.TensorboardService.BatchCreateTensorboardRuns].
Request message for
[TensorboardService.BatchCreateTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.BatchCreateTensorboardTimeSeries].
Response message for
[TensorboardService.BatchCreateTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.BatchCreateTensorboardTimeSeries].
A description of resources that are used for performing batch operations, are
dedicated to a Model, and need manual configuration.
Request message for
[PipelineService.BatchDeletePipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.BatchDeletePipelineJobs].
Response message for
[PipelineService.BatchDeletePipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.BatchDeletePipelineJobs].
Request message for
[ModelService.BatchImportEvaluatedAnnotations][google.cloud.aiplatform.v1beta1.ModelService.BatchImportEvaluatedAnnotations]
Response message for
[ModelService.BatchImportEvaluatedAnnotations][google.cloud.aiplatform.v1beta1.ModelService.BatchImportEvaluatedAnnotations]
Request message for
[ModelService.BatchImportModelEvaluationSlices][google.cloud.aiplatform.v1beta1.ModelService.BatchImportModelEvaluationSlices]
Response message for
[ModelService.BatchImportModelEvaluationSlices][google.cloud.aiplatform.v1beta1.ModelService.BatchImportModelEvaluationSlices]
Runtime operation information for
[MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1beta1.MigrationService.BatchMigrateResources].
Request message for
[MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1beta1.MigrationService.BatchMigrateResources].
Response message for
[MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1beta1.MigrationService.BatchMigrateResources].
A job that uses a
[Model][google.cloud.aiplatform.v1beta1.BatchPredictionJob.model] to produce
predictions on multiple [input
instances][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config].
If predictions for significant portion of the instances fail, the job may
finish without attempting predictions for all remaining instances.
Details of operations that batch reads Feature values.
Request message for
[FeaturestoreService.BatchReadFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.BatchReadFeatureValues].
Response message for
[FeaturestoreService.BatchReadFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.BatchReadFeatureValues].
Request message for
[TensorboardService.BatchReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1beta1.TensorboardService.BatchReadTensorboardTimeSeriesData].
Response message for
[TensorboardService.BatchReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1beta1.TensorboardService.BatchReadTensorboardTimeSeriesData].
The BigQuery location for the output content.
The BigQuery location for the input content.
Input for bleu metric.
Spec for bleu instance.
Bleu metric value for an instance.
Results for bleu metric.
Spec for bleu score metric - calculates the precision of n-grams in the
prediction as compared to reference - returns a score ranging between 0 to 1.
Content blob.
Config for blur baseline.
A list of boolean values.
A resource used in LLM queries for users to explicitly specify what to cache
and how to cache.
Request message for
[JobService.CancelBatchPredictionJob][google.cloud.aiplatform.v1beta1.JobService.CancelBatchPredictionJob].
Request message for
[JobService.CancelCustomJob][google.cloud.aiplatform.v1beta1.JobService.CancelCustomJob].
Request message for
[JobService.CancelDataLabelingJob][google.cloud.aiplatform.v1beta1.JobService.CancelDataLabelingJob].
Request message for
[JobService.CancelHyperparameterTuningJob][google.cloud.aiplatform.v1beta1.JobService.CancelHyperparameterTuningJob].
Request message for
[JobService.CancelNasJob][google.cloud.aiplatform.v1beta1.JobService.CancelNasJob].
Request message for
[PipelineService.CancelPipelineJob][google.cloud.aiplatform.v1beta1.PipelineService.CancelPipelineJob].
Request message for
[PipelineService.CancelTrainingPipeline][google.cloud.aiplatform.v1beta1.PipelineService.CancelTrainingPipeline].
Request message for
[GenAiTuningService.CancelTuningJob][google.cloud.aiplatform.v1beta1.GenAiTuningService.CancelTuningJob].
A response candidate generated from the model.
Request message for [PredictionService.ChatCompletions]
This message will be placed in the metadata field of a
google.longrunning.Operation associated with a CheckTrialEarlyStoppingState
request.
Request message for
[VizierService.CheckTrialEarlyStoppingState][google.cloud.aiplatform.v1beta1.VizierService.CheckTrialEarlyStoppingState].
Response message for
[VizierService.CheckTrialEarlyStoppingState][google.cloud.aiplatform.v1beta1.VizierService.CheckTrialEarlyStoppingState].
Source attributions for content.
A collection of source attributions for a piece of content.
Input for coherence metric.
Spec for coherence instance.
Spec for coherence result.
Spec for coherence score metric.
Request message for
[VizierService.CompleteTrial][google.cloud.aiplatform.v1beta1.VizierService.CompleteTrial].
Success and error statistics of processing multiple entities
(for example, DataItems or structured data rows) in batch.
Request message for ComputeTokens RPC call.
Response message for ComputeTokens RPC call.
The Container Registry location for the container image.
The spec of a Container.
The base structured datatype containing multi-part content of a message.
Instance of a general context.
Details of
[ModelService.CopyModel][google.cloud.aiplatform.v1beta1.ModelService.CopyModel]
operation.
Request message for
[ModelService.CopyModel][google.cloud.aiplatform.v1beta1.ModelService.CopyModel].
Response message of
[ModelService.CopyModel][google.cloud.aiplatform.v1beta1.ModelService.CopyModel]
operation.
RagCorpus status.
Request message for
[PredictionService.CountTokens][google.cloud.aiplatform.v1beta1.PredictionService.CountTokens].
Response message for
[PredictionService.CountTokens][google.cloud.aiplatform.v1beta1.PredictionService.CountTokens].
Request message for
[MetadataService.CreateArtifact][google.cloud.aiplatform.v1beta1.MetadataService.CreateArtifact].
Request message for
[JobService.CreateBatchPredictionJob][google.cloud.aiplatform.v1beta1.JobService.CreateBatchPredictionJob].
Request message for
[GenAiCacheService.CreateCachedContent][google.cloud.aiplatform.v1beta1.GenAiCacheService.CreateCachedContent].
Request message for
[MetadataService.CreateContext][google.cloud.aiplatform.v1beta1.MetadataService.CreateContext].
Request message for
[JobService.CreateCustomJob][google.cloud.aiplatform.v1beta1.JobService.CreateCustomJob].
Request message for
[JobService.CreateDataLabelingJob][google.cloud.aiplatform.v1beta1.JobService.CreateDataLabelingJob].
Runtime operation information for
[DatasetService.CreateDataset][google.cloud.aiplatform.v1beta1.DatasetService.CreateDataset].
Request message for
[DatasetService.CreateDataset][google.cloud.aiplatform.v1beta1.DatasetService.CreateDataset].
Runtime operation information for
[DatasetService.CreateDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.CreateDatasetVersion].
Request message for
[DatasetService.CreateDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.CreateDatasetVersion].
Runtime operation information for CreateDeploymentResourcePool method.
Request message for CreateDeploymentResourcePool method.
Runtime operation information for
[EndpointService.CreateEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.CreateEndpoint].
Request message for
[EndpointService.CreateEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.CreateEndpoint].
Details of operations that perform create EntityType.
Request message for
[FeaturestoreService.CreateEntityType][google.cloud.aiplatform.v1beta1.FeaturestoreService.CreateEntityType].
Request message for
[MetadataService.CreateExecution][google.cloud.aiplatform.v1beta1.MetadataService.CreateExecution].
Details of operations that perform create FeatureGroup.
Request message for
[FeatureRegistryService.CreateFeatureGroup][google.cloud.aiplatform.v1beta1.FeatureRegistryService.CreateFeatureGroup].
Details of operations that perform create FeatureOnlineStore.
Request message for
[FeatureOnlineStoreAdminService.CreateFeatureOnlineStore][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.CreateFeatureOnlineStore].
Details of operations that perform create Feature.
Request message for
[FeaturestoreService.CreateFeature][google.cloud.aiplatform.v1beta1.FeaturestoreService.CreateFeature].
Request message for
[FeatureRegistryService.CreateFeature][google.cloud.aiplatform.v1beta1.FeatureRegistryService.CreateFeature].
Details of operations that perform create FeatureView.
Request message for
[FeatureOnlineStoreAdminService.CreateFeatureView][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.CreateFeatureView].
Details of operations that perform create Featurestore.
Request message for
[FeaturestoreService.CreateFeaturestore][google.cloud.aiplatform.v1beta1.FeaturestoreService.CreateFeaturestore].
Request message for
[JobService.CreateHyperparameterTuningJob][google.cloud.aiplatform.v1beta1.JobService.CreateHyperparameterTuningJob].
Runtime operation information for
[IndexEndpointService.CreateIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.CreateIndexEndpoint].
Request message for
[IndexEndpointService.CreateIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.CreateIndexEndpoint].
Runtime operation information for
[IndexService.CreateIndex][google.cloud.aiplatform.v1beta1.IndexService.CreateIndex].
Request message for
[IndexService.CreateIndex][google.cloud.aiplatform.v1beta1.IndexService.CreateIndex].
Request message for
[MetadataService.CreateMetadataSchema][google.cloud.aiplatform.v1beta1.MetadataService.CreateMetadataSchema].
Details of operations that perform
[MetadataService.CreateMetadataStore][google.cloud.aiplatform.v1beta1.MetadataService.CreateMetadataStore].
Request message for
[MetadataService.CreateMetadataStore][google.cloud.aiplatform.v1beta1.MetadataService.CreateMetadataStore].
Request message for
[JobService.CreateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.CreateModelDeploymentMonitoringJob].
Runtime operation information for
[ModelMonitoringService.CreateModelMonitor][google.cloud.aiplatform.v1beta1.ModelMonitoringService.CreateModelMonitor].
Request message for
[ModelMonitoringService.CreateModelMonitor][google.cloud.aiplatform.v1beta1.ModelMonitoringService.CreateModelMonitor].
Request message for
[ModelMonitoringService.CreateModelMonitoringJob][google.cloud.aiplatform.v1beta1.ModelMonitoringService.CreateModelMonitoringJob].
Request message for
[JobService.CreateNasJob][google.cloud.aiplatform.v1beta1.JobService.CreateNasJob].
Metadata information for
[NotebookService.CreateNotebookExecutionJob][google.cloud.aiplatform.v1beta1.NotebookService.CreateNotebookExecutionJob].
Request message for [NotebookService.CreateNotebookExecutionJob]
Metadata information for
[NotebookService.CreateNotebookRuntimeTemplate][google.cloud.aiplatform.v1beta1.NotebookService.CreateNotebookRuntimeTemplate].
Request message for
[NotebookService.CreateNotebookRuntimeTemplate][google.cloud.aiplatform.v1beta1.NotebookService.CreateNotebookRuntimeTemplate].
Details of operations that perform create PersistentResource.
Request message for
[PersistentResourceService.CreatePersistentResource][google.cloud.aiplatform.v1beta1.PersistentResourceService.CreatePersistentResource].
Request message for
[PipelineService.CreatePipelineJob][google.cloud.aiplatform.v1beta1.PipelineService.CreatePipelineJob].
Runtime operation information for
[VertexRagDataService.CreateRagCorpus][google.cloud.aiplatform.v1beta1.VertexRagDataService.CreateRagCorpus].
Request message for
[VertexRagDataService.CreateRagCorpus][google.cloud.aiplatform.v1beta1.VertexRagDataService.CreateRagCorpus].
Details of
[ReasoningEngineService.CreateReasoningEngine][google.cloud.aiplatform.v1beta1.ReasoningEngineService.CreateReasoningEngine]
operation.
Request message for
[ReasoningEngineService.CreateReasoningEngine][google.cloud.aiplatform.v1beta1.ReasoningEngineService.CreateReasoningEngine].
Details of operations that perform create FeatureGroup.
Request message for
[ScheduleService.CreateSchedule][google.cloud.aiplatform.v1beta1.ScheduleService.CreateSchedule].
Runtime operation information for
[SpecialistPoolService.CreateSpecialistPool][google.cloud.aiplatform.v1beta1.SpecialistPoolService.CreateSpecialistPool].
Request message for
[SpecialistPoolService.CreateSpecialistPool][google.cloud.aiplatform.v1beta1.SpecialistPoolService.CreateSpecialistPool].
Request message for
[VizierService.CreateStudy][google.cloud.aiplatform.v1beta1.VizierService.CreateStudy].
Request message for
[TensorboardService.CreateTensorboardExperiment][google.cloud.aiplatform.v1beta1.TensorboardService.CreateTensorboardExperiment].
Details of operations that perform create Tensorboard.
Request message for
[TensorboardService.CreateTensorboard][google.cloud.aiplatform.v1beta1.TensorboardService.CreateTensorboard].
Request message for
[TensorboardService.CreateTensorboardRun][google.cloud.aiplatform.v1beta1.TensorboardService.CreateTensorboardRun].
Request message for
[TensorboardService.CreateTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.CreateTensorboardTimeSeries].
Request message for
[PipelineService.CreateTrainingPipeline][google.cloud.aiplatform.v1beta1.PipelineService.CreateTrainingPipeline].
Request message for
[VizierService.CreateTrial][google.cloud.aiplatform.v1beta1.VizierService.CreateTrial].
Request message for
[GenAiTuningService.CreateTuningJob][google.cloud.aiplatform.v1beta1.GenAiTuningService.CreateTuningJob].
The storage details for CSV output content.
The storage details for CSV input content.
Represents a job that runs custom workloads such as a Docker container or a
Python package. A CustomJob can have multiple worker pools and each worker
pool can have its own machine and input spec. A CustomJob will be cleaned up
once the job enters terminal state (failed or succeeded).
Represents the spec of a CustomJob.
A piece of data in a Dataset. Could be an image, a video, a document or plain
text.
A container for a single DataItem and Annotations on it.
DataLabelingJob is used to trigger a human labeling job on unlabeled data
from the following Dataset:
A collection of DataItems and Annotations on them.
Distribution computed over a tuning dataset.
Statistics computed over a tuning dataset.
Describes the dataset version.
A description of resources that are dedicated to a DeployedModel, and
that need a higher degree of manual configuration.
Request message for
[MetadataService.DeleteArtifact][google.cloud.aiplatform.v1beta1.MetadataService.DeleteArtifact].
Request message for
[JobService.DeleteBatchPredictionJob][google.cloud.aiplatform.v1beta1.JobService.DeleteBatchPredictionJob].
Request message for
[GenAiCacheService.DeleteCachedContent][google.cloud.aiplatform.v1beta1.GenAiCacheService.DeleteCachedContent].
Request message for
[MetadataService.DeleteContext][google.cloud.aiplatform.v1beta1.MetadataService.DeleteContext].
Request message for
[JobService.DeleteCustomJob][google.cloud.aiplatform.v1beta1.JobService.DeleteCustomJob].
Request message for
[JobService.DeleteDataLabelingJob][google.cloud.aiplatform.v1beta1.JobService.DeleteDataLabelingJob].
Request message for
[DatasetService.DeleteDataset][google.cloud.aiplatform.v1beta1.DatasetService.DeleteDataset].
Request message for
[DatasetService.DeleteDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.DeleteDatasetVersion].
Request message for DeleteDeploymentResourcePool method.
Request message for
[EndpointService.DeleteEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.DeleteEndpoint].
Request message for [FeaturestoreService.DeleteEntityTypes][].
Request message for
[MetadataService.DeleteExecution][google.cloud.aiplatform.v1beta1.MetadataService.DeleteExecution].
Request message for
[ExtensionRegistryService.DeleteExtension][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.DeleteExtension].
Request message for
[FeatureRegistryService.DeleteFeatureGroup][google.cloud.aiplatform.v1beta1.FeatureRegistryService.DeleteFeatureGroup].
Request message for
[FeatureOnlineStoreAdminService.DeleteFeatureOnlineStore][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.DeleteFeatureOnlineStore].
Request message for
[FeaturestoreService.DeleteFeature][google.cloud.aiplatform.v1beta1.FeaturestoreService.DeleteFeature].
Request message for
[FeatureRegistryService.DeleteFeature][google.cloud.aiplatform.v1beta1.FeatureRegistryService.DeleteFeature].
Details of operations that delete Feature values.
Request message for
[FeaturestoreService.DeleteFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.DeleteFeatureValues].
Response message for
[FeaturestoreService.DeleteFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.DeleteFeatureValues].
Request message for [FeatureOnlineStoreAdminService.DeleteFeatureViews][].
Request message for
[FeaturestoreService.DeleteFeaturestore][google.cloud.aiplatform.v1beta1.FeaturestoreService.DeleteFeaturestore].
Request message for
[JobService.DeleteHyperparameterTuningJob][google.cloud.aiplatform.v1beta1.JobService.DeleteHyperparameterTuningJob].
Request message for
[IndexEndpointService.DeleteIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.DeleteIndexEndpoint].
Request message for
[IndexService.DeleteIndex][google.cloud.aiplatform.v1beta1.IndexService.DeleteIndex].
Details of operations that perform
[MetadataService.DeleteMetadataStore][google.cloud.aiplatform.v1beta1.MetadataService.DeleteMetadataStore].
Request message for
[MetadataService.DeleteMetadataStore][google.cloud.aiplatform.v1beta1.MetadataService.DeleteMetadataStore].
Request message for
[JobService.DeleteModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.DeleteModelDeploymentMonitoringJob].
Request message for
[ModelMonitoringService.DeleteModelMonitor][google.cloud.aiplatform.v1beta1.ModelMonitoringService.DeleteModelMonitor].
Request message for
[ModelMonitoringService.DeleteModelMonitoringJob][google.cloud.aiplatform.v1beta1.ModelMonitoringService.DeleteModelMonitoringJob].
Request message for
[ModelService.DeleteModel][google.cloud.aiplatform.v1beta1.ModelService.DeleteModel].
Request message for
[ModelService.DeleteModelVersion][google.cloud.aiplatform.v1beta1.ModelService.DeleteModelVersion].
Request message for
[JobService.DeleteNasJob][google.cloud.aiplatform.v1beta1.JobService.DeleteNasJob].
Request message for [NotebookService.DeleteNotebookExecutionJob]
Request message for
[NotebookService.DeleteNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.DeleteNotebookRuntime].
Request message for
[NotebookService.DeleteNotebookRuntimeTemplate][google.cloud.aiplatform.v1beta1.NotebookService.DeleteNotebookRuntimeTemplate].
Details of operations that perform deletes of any entities.
Request message for
[PersistentResourceService.DeletePersistentResource][google.cloud.aiplatform.v1beta1.PersistentResourceService.DeletePersistentResource].
Request message for
[PipelineService.DeletePipelineJob][google.cloud.aiplatform.v1beta1.PipelineService.DeletePipelineJob].
Request message for
[VertexRagDataService.DeleteRagCorpus][google.cloud.aiplatform.v1beta1.VertexRagDataService.DeleteRagCorpus].
Request message for
[VertexRagDataService.DeleteRagFile][google.cloud.aiplatform.v1beta1.VertexRagDataService.DeleteRagFile].
Request message for
[ReasoningEngineService.DeleteReasoningEngine][google.cloud.aiplatform.v1beta1.ReasoningEngineService.DeleteReasoningEngine].
Request message for
[DatasetService.DeleteSavedQuery][google.cloud.aiplatform.v1beta1.DatasetService.DeleteSavedQuery].
Request message for
[ScheduleService.DeleteSchedule][google.cloud.aiplatform.v1beta1.ScheduleService.DeleteSchedule].
Request message for
[SpecialistPoolService.DeleteSpecialistPool][google.cloud.aiplatform.v1beta1.SpecialistPoolService.DeleteSpecialistPool].
Request message for
[VizierService.DeleteStudy][google.cloud.aiplatform.v1beta1.VizierService.DeleteStudy].
Request message for
[TensorboardService.DeleteTensorboardExperiment][google.cloud.aiplatform.v1beta1.TensorboardService.DeleteTensorboardExperiment].
Request message for
[TensorboardService.DeleteTensorboard][google.cloud.aiplatform.v1beta1.TensorboardService.DeleteTensorboard].
Request message for
[TensorboardService.DeleteTensorboardRun][google.cloud.aiplatform.v1beta1.TensorboardService.DeleteTensorboardRun].
Request message for
[TensorboardService.DeleteTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.DeleteTensorboardTimeSeries].
Request message for
[PipelineService.DeleteTrainingPipeline][google.cloud.aiplatform.v1beta1.PipelineService.DeleteTrainingPipeline].
Request message for
[VizierService.DeleteTrial][google.cloud.aiplatform.v1beta1.VizierService.DeleteTrial].
Runtime operation information for
[IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.DeployIndex].
Request message for
[IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.DeployIndex].
Response message for
[IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.DeployIndex].
Runtime operation information for
[EndpointService.DeployModel][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel].
Request message for
[EndpointService.DeployModel][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel].
Response message for
[EndpointService.DeployModel][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel].
A deployment of an Index. IndexEndpoints contain one or more DeployedIndexes.
Used to set up the auth on the DeployedIndex’s private endpoint.
Points to a DeployedIndex.
A deployment of a Model. Endpoints contain one or more DeployedModels.
Points to a DeployedModel.
A description of resources that can be shared by multiple DeployedModels,
whose underlying specification consists of a DedicatedResources.
Request message for
[PredictionService.DirectPredict][google.cloud.aiplatform.v1beta1.PredictionService.DirectPredict].
Response message for
[PredictionService.DirectPredict][google.cloud.aiplatform.v1beta1.PredictionService.DirectPredict].
Request message for
[PredictionService.DirectRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.DirectRawPredict].
Response message for
[PredictionService.DirectRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.DirectRawPredict].
The input content is encapsulated and uploaded in the request.
Represents the spec of disk options.
Statistics computed for datasets used for distillation.
Hyperparameters for Distillation.
Tuning Spec for Distillation.
A list of double values.
Represents a customer-managed encryption key spec that can be applied to
a top-level resource.
Models are deployed into it, and afterwards Endpoint is called to obtain
predictions and explanations.
Selector for entityId. Getting ids from the given source.
An entity type is a type of object in a system that needs to be modeled and
have stored information about. For example, driver is an entity type, and
driver0 is an instance of an entity type driver.
Represents an environment variable present in a Container or Python Module.
Model error analysis for each annotation.
Request message for EvaluationService.EvaluateInstances.
Response message for EvaluationService.EvaluateInstances.
True positive, false positive, or false negative.
Explanation result of the prediction produced by the Model.
An edge describing the relationship between an Artifact and an Execution in
a lineage graph.
Input for exact match metric.
Spec for exact match instance.
Exact match metric value for an instance.
Results for exact match metric.
Spec for exact match metric - returns 1 if prediction and reference exactly
matches, otherwise 0.
Example-based explainability that returns the nearest neighbors from the
provided dataset.
Overrides for example-based explanations.
Restrictions namespace for example-based explanations overrides.
Request message for
[ExtensionExecutionService.ExecuteExtension][google.cloud.aiplatform.v1beta1.ExtensionExecutionService.ExecuteExtension].
Response message for
[ExtensionExecutionService.ExecuteExtension][google.cloud.aiplatform.v1beta1.ExtensionExecutionService.ExecuteExtension].
Instance of a general execution.
Request message for
[PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
Response message for
[PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
Explanation of a prediction (provided in
[PredictResponse.predictions][google.cloud.aiplatform.v1beta1.PredictResponse.predictions])
produced by the Model on a given
[instance][google.cloud.aiplatform.v1beta1.ExplainRequest.instances].
Metadata describing the Model’s input and output for explanation.
The
[ExplanationMetadata][google.cloud.aiplatform.v1beta1.ExplanationMetadata]
entries that can be overridden at [online
explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] time.
Parameters to configure explaining for Model’s predictions.
Specification of Model explanation.
The [ExplanationSpec][google.cloud.aiplatform.v1beta1.ExplanationSpec]
entries that can be overridden at [online
explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] time.
Describes what part of the Dataset is to be exported, the destination of
the export and how to export.
Runtime operation information for
[DatasetService.ExportData][google.cloud.aiplatform.v1beta1.DatasetService.ExportData].
Request message for
[DatasetService.ExportData][google.cloud.aiplatform.v1beta1.DatasetService.ExportData].
Response message for
[DatasetService.ExportData][google.cloud.aiplatform.v1beta1.DatasetService.ExportData].
Details of operations that exports Features values.
Request message for
[FeaturestoreService.ExportFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.ExportFeatureValues].
Response message for
[FeaturestoreService.ExportFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.ExportFeatureValues].
Assigns the input data to training, validation, and test sets as per the
given fractions. Any of training_fraction
, validation_fraction
and
test_fraction
may optionally be provided, they must sum to up to 1. If the
provided ones sum to less than 1, the remainder is assigned to sets as
decided by Vertex AI. If none of the fractions are set, by default roughly
80% of data is used for training, 10% for validation, and 10% for test.
Details of
[ModelService.ExportModel][google.cloud.aiplatform.v1beta1.ModelService.ExportModel]
operation.
Request message for
[ModelService.ExportModel][google.cloud.aiplatform.v1beta1.ModelService.ExportModel].
Response message of
[ModelService.ExportModel][google.cloud.aiplatform.v1beta1.ModelService.ExportModel]
operation.
Request message for
[TensorboardService.ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1beta1.TensorboardService.ExportTensorboardTimeSeriesData].
Response message for
[TensorboardService.ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1beta1.TensorboardService.ExportTensorboardTimeSeriesData].
Extensions are tools for large language models to access external data, run
computations, etc.
Manifest spec of an Extension needed for runtime execution.
Operation of an extension.
PrivateExtensionConfig configuration for the extension.
Feature Metadata information.
For example, color is a feature that describes an apple.
Vertex AI Feature Group.
Noise sigma by features. Noise sigma represents the standard deviation of the
gaussian kernel that will be used to add noise to interpolated inputs prior
to computing gradients.
Vertex AI Feature Online Store provides a centralized repository for serving
ML features and embedding indexes at low latency. The Feature Online Store is
a top-level container.
Selector for Features of an EntityType.
Stats and Anomaly generated at specific timestamp for specific Feature.
The start_time and end_time are used to define the time range of the dataset
that current stats belongs to, e.g. prediction traffic is bucketed into
prediction datasets by time window. If the Dataset is not defined by time
window, start_time = end_time. Timestamp of the stats and anomalies always
refers to end_time. Raw stats and anomalies are stored in stats_uri or
anomaly_uri in the tensorflow defined protos. Field data_stats contains
almost identical information with the raw stats in Vertex AI
defined proto, for UI to display.
Value for a feature.
A destination location for Feature values and format.
Container for list of values.
FeatureView is representation of values that the FeatureOnlineStore will
serve based on its syncConfig.
Lookup key for a feature view.
FeatureViewSync is a representation of sync operation which copies data from
data source to Feature View in Online Store.
Vertex AI Feature Store provides a centralized repository for organizing,
storing, and serving ML features. The Featurestore is a top-level container
for your features and their values.
Configuration of how features in Featurestore are monitored.
Request message for
[FeatureOnlineStoreService.FetchFeatureValues][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreService.FetchFeatureValues].
All the features under the requested feature view will be returned.
Response message for
[FeatureOnlineStoreService.FetchFeatureValues][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreService.FetchFeatureValues]
URI based data.
RagFile status.
Assigns input data to training, validation, and test sets based on the given
filters, data pieces not matched by any filter are ignored. Currently only
supported for Datasets containing DataItems.
If any of the filters in this message are to match nothing, then they can be
set as ‘-’ (the minus sign).
The request message for
[MatchService.FindNeighbors][google.cloud.aiplatform.v1beta1.MatchService.FindNeighbors].
The response message for
[MatchService.FindNeighbors][google.cloud.aiplatform.v1beta1.MatchService.FindNeighbors].
Input for fluency metric.
Spec for fluency instance.
Spec for fluency result.
Spec for fluency score metric.
Assigns the input data to training, validation, and test sets as per the
given fractions. Any of training_fraction
, validation_fraction
and
test_fraction
may optionally be provided, they must sum to up to 1. If the
provided ones sum to less than 1, the remainder is assigned to sets as
decided by Vertex AI. If none of the fractions are set, by default roughly
80% of data is used for training, 10% for validation, and 10% for test.
Input for fulfillment metric.
Spec for fulfillment instance.
Spec for fulfillment result.
Spec for fulfillment metric.
A predicted [FunctionCall] returned from the model that contains a string
representing the [FunctionDeclaration.name] and a structured JSON object
containing the parameters and their values.
Function calling config.
Structured representation of a function declaration as defined by the
OpenAPI 3.0 specification. Included
in this declaration are the function name and parameters. This
FunctionDeclaration is a representation of a block of code that can be used
as a
Tool
by the model and executed by the client.
The result output from a [FunctionCall] that contains a string representing
the [FunctionDeclaration.name] and a structured JSON object containing any
output from the function is used as context to the model. This should contain
the result of a [FunctionCall] made based on model prediction.
The Google Cloud Storage location where the output is to be written to.
The Google Cloud Storage location for the input content.
Request message for [PredictionService.GenerateContent].
Response message for [PredictionService.GenerateContent].
Generate video response.
Generation config.
Generic Metadata shared by all operations.
Contains information about the source of the models generated from Generative
AI Studio.
Request message for
[DatasetService.GetAnnotationSpec][google.cloud.aiplatform.v1beta1.DatasetService.GetAnnotationSpec].
Request message for
[MetadataService.GetArtifact][google.cloud.aiplatform.v1beta1.MetadataService.GetArtifact].
Request message for
[JobService.GetBatchPredictionJob][google.cloud.aiplatform.v1beta1.JobService.GetBatchPredictionJob].
Request message for
[GenAiCacheService.GetCachedContent][google.cloud.aiplatform.v1beta1.GenAiCacheService.GetCachedContent].
Request message for
[MetadataService.GetContext][google.cloud.aiplatform.v1beta1.MetadataService.GetContext].
Request message for
[JobService.GetCustomJob][google.cloud.aiplatform.v1beta1.JobService.GetCustomJob].
Request message for
[JobService.GetDataLabelingJob][google.cloud.aiplatform.v1beta1.JobService.GetDataLabelingJob].
Request message for
[DatasetService.GetDataset][google.cloud.aiplatform.v1beta1.DatasetService.GetDataset].
Request message for
[DatasetService.GetDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.GetDatasetVersion].
Request message for GetDeploymentResourcePool method.
Request message for
[EndpointService.GetEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.GetEndpoint]
Request message for
[FeaturestoreService.GetEntityType][google.cloud.aiplatform.v1beta1.FeaturestoreService.GetEntityType].
Request message for
[MetadataService.GetExecution][google.cloud.aiplatform.v1beta1.MetadataService.GetExecution].
Request message for
[ExtensionRegistryService.GetExtension][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.GetExtension].
Request message for
[FeatureRegistryService.GetFeatureGroup][google.cloud.aiplatform.v1beta1.FeatureRegistryService.GetFeatureGroup].
Request message for
[FeatureOnlineStoreAdminService.GetFeatureOnlineStore][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.GetFeatureOnlineStore].
Request message for
[FeaturestoreService.GetFeature][google.cloud.aiplatform.v1beta1.FeaturestoreService.GetFeature].
Request message for
[FeatureRegistryService.GetFeature][google.cloud.aiplatform.v1beta1.FeatureRegistryService.GetFeature].
Request message for
[FeatureOnlineStoreAdminService.GetFeatureView][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.GetFeatureView].
Request message for
[FeatureOnlineStoreAdminService.GetFeatureViewSync][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.GetFeatureViewSync].
Request message for
[FeaturestoreService.GetFeaturestore][google.cloud.aiplatform.v1beta1.FeaturestoreService.GetFeaturestore].
Request message for
[JobService.GetHyperparameterTuningJob][google.cloud.aiplatform.v1beta1.JobService.GetHyperparameterTuningJob].
Request message for
[IndexEndpointService.GetIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.GetIndexEndpoint]
Request message for
[IndexService.GetIndex][google.cloud.aiplatform.v1beta1.IndexService.GetIndex]
Request message for
[MetadataService.GetMetadataSchema][google.cloud.aiplatform.v1beta1.MetadataService.GetMetadataSchema].
Request message for
[MetadataService.GetMetadataStore][google.cloud.aiplatform.v1beta1.MetadataService.GetMetadataStore].
Request message for
[JobService.GetModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.GetModelDeploymentMonitoringJob].
Request message for
[ModelService.GetModelEvaluation][google.cloud.aiplatform.v1beta1.ModelService.GetModelEvaluation].
Request message for
[ModelService.GetModelEvaluationSlice][google.cloud.aiplatform.v1beta1.ModelService.GetModelEvaluationSlice].
Request message for
[ModelMonitoringService.GetModelMonitor][google.cloud.aiplatform.v1beta1.ModelMonitoringService.GetModelMonitor].
Request message for
[ModelMonitoringService.GetModelMonitoringJob][google.cloud.aiplatform.v1beta1.ModelMonitoringService.GetModelMonitoringJob].
Request message for
[ModelService.GetModel][google.cloud.aiplatform.v1beta1.ModelService.GetModel].
Request message for
[JobService.GetNasJob][google.cloud.aiplatform.v1beta1.JobService.GetNasJob].
Request message for
[JobService.GetNasTrialDetail][google.cloud.aiplatform.v1beta1.JobService.GetNasTrialDetail].
Request message for [NotebookService.GetNotebookExecutionJob]
Request message for
[NotebookService.GetNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.GetNotebookRuntime]
Request message for
[NotebookService.GetNotebookRuntimeTemplate][google.cloud.aiplatform.v1beta1.NotebookService.GetNotebookRuntimeTemplate]
Request message for
[PersistentResourceService.GetPersistentResource][google.cloud.aiplatform.v1beta1.PersistentResourceService.GetPersistentResource].
Request message for
[PipelineService.GetPipelineJob][google.cloud.aiplatform.v1beta1.PipelineService.GetPipelineJob].
Request message for
[ModelGardenService.GetPublisherModel][google.cloud.aiplatform.v1beta1.ModelGardenService.GetPublisherModel]
Request message for
[VertexRagDataService.GetRagCorpus][google.cloud.aiplatform.v1beta1.VertexRagDataService.GetRagCorpus]
Request message for
[VertexRagDataService.GetRagFile][google.cloud.aiplatform.v1beta1.VertexRagDataService.GetRagFile]
Request message for
[ReasoningEngineService.GetReasoningEngine][google.cloud.aiplatform.v1beta1.ReasoningEngineService.GetReasoningEngine].
Request message for
[ScheduleService.GetSchedule][google.cloud.aiplatform.v1beta1.ScheduleService.GetSchedule].
Request message for
[SpecialistPoolService.GetSpecialistPool][google.cloud.aiplatform.v1beta1.SpecialistPoolService.GetSpecialistPool].
Request message for
[VizierService.GetStudy][google.cloud.aiplatform.v1beta1.VizierService.GetStudy].
Request message for
[TensorboardService.GetTensorboardExperiment][google.cloud.aiplatform.v1beta1.TensorboardService.GetTensorboardExperiment].
Request message for
[TensorboardService.GetTensorboard][google.cloud.aiplatform.v1beta1.TensorboardService.GetTensorboard].
Request message for
[TensorboardService.GetTensorboardRun][google.cloud.aiplatform.v1beta1.TensorboardService.GetTensorboardRun].
Request message for
[TensorboardService.GetTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.GetTensorboardTimeSeries].
Request message for
[PipelineService.GetTrainingPipeline][google.cloud.aiplatform.v1beta1.PipelineService.GetTrainingPipeline].
Request message for
[VizierService.GetTrial][google.cloud.aiplatform.v1beta1.VizierService.GetTrial].
Request message for
[GenAiTuningService.GetTuningJob][google.cloud.aiplatform.v1beta1.GenAiTuningService.GetTuningJob].
The Google Drive location for the input content.
Tool to retrieve public web data for grounding, powered by Google.
Input for groundedness metric.
Spec for groundedness instance.
Spec for groundedness result.
Spec for groundedness metric.
Grounding chunk.
Metadata returned to client when grounding is enabled.
Grounding support.
Represents a HyperparameterTuningJob. A HyperparameterTuningJob
has a Study specification and multiple CustomJobs with identical
CustomJob specification.
Matcher for Features of an EntityType by Feature ID.
Describes the location from where we import data into a Dataset, together
with the labels that will be applied to the DataItems and the Annotations.
Runtime operation information for
[DatasetService.ImportData][google.cloud.aiplatform.v1beta1.DatasetService.ImportData].
Request message for
[DatasetService.ImportData][google.cloud.aiplatform.v1beta1.DatasetService.ImportData].
Response message for
[DatasetService.ImportData][google.cloud.aiplatform.v1beta1.DatasetService.ImportData].
Details of
[ExtensionRegistryService.ImportExtension][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.ImportExtension]
operation.
Request message for
[ExtensionRegistryService.ImportExtension][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.ImportExtension].
Details of operations that perform import Feature values.
Request message for
[FeaturestoreService.ImportFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.ImportFeatureValues].
Response message for
[FeaturestoreService.ImportFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.ImportFeatureValues].
Request message for
[ModelService.ImportModelEvaluation][google.cloud.aiplatform.v1beta1.ModelService.ImportModelEvaluation]
Config for importing RagFiles.
Runtime operation information for
[VertexRagDataService.ImportRagFiles][google.cloud.aiplatform.v1beta1.VertexRagDataService.ImportRagFiles].
Request message for
[VertexRagDataService.ImportRagFiles][google.cloud.aiplatform.v1beta1.VertexRagDataService.ImportRagFiles].
Response message for
[VertexRagDataService.ImportRagFiles][google.cloud.aiplatform.v1beta1.VertexRagDataService.ImportRagFiles].
A representation of a collection of database items organized in a way that
allows for approximate nearest neighbor (a.k.a ANN) algorithms search.
A datapoint of Index.
Indexes are deployed into it. An IndexEndpoint can have multiple
DeployedIndexes.
IndexPrivateEndpoints proto is used to provide paths for users to send
requests via private endpoints (e.g. private service access, private service
connect).
To send request via private service access, use match_grpc_address.
To send request via private service connect, use service_attachment.
Stats of the Index.
Specifies Vertex AI owned input data to be used for training, and
possibly evaluating, the Model.
A list of int64 values.
An attribution method that computes the Aumann-Shapley value taking advantage
of the model’s fully differentiable structure. Refer to this paper for
more details:
https://arxiv.org/abs/1703.01365The Jira source for the ImportRagFilesRequest.
Contains information about the Large Model.
A subgraph of the overall lineage graph. Event edges connect Artifact and
Execution nodes.
Request message for
[DatasetService.ListAnnotations][google.cloud.aiplatform.v1beta1.DatasetService.ListAnnotations].
Response message for
[DatasetService.ListAnnotations][google.cloud.aiplatform.v1beta1.DatasetService.ListAnnotations].
Request message for
[MetadataService.ListArtifacts][google.cloud.aiplatform.v1beta1.MetadataService.ListArtifacts].
Response message for
[MetadataService.ListArtifacts][google.cloud.aiplatform.v1beta1.MetadataService.ListArtifacts].
Request message for
[JobService.ListBatchPredictionJobs][google.cloud.aiplatform.v1beta1.JobService.ListBatchPredictionJobs].
Response message for
[JobService.ListBatchPredictionJobs][google.cloud.aiplatform.v1beta1.JobService.ListBatchPredictionJobs]
Request to list CachedContents.
Response with a list of CachedContents.
Request message for
[MetadataService.ListContexts][google.cloud.aiplatform.v1beta1.MetadataService.ListContexts]
Response message for
[MetadataService.ListContexts][google.cloud.aiplatform.v1beta1.MetadataService.ListContexts].
Request message for
[JobService.ListCustomJobs][google.cloud.aiplatform.v1beta1.JobService.ListCustomJobs].
Response message for
[JobService.ListCustomJobs][google.cloud.aiplatform.v1beta1.JobService.ListCustomJobs]
Request message for
[DatasetService.ListDataItems][google.cloud.aiplatform.v1beta1.DatasetService.ListDataItems].
Response message for
[DatasetService.ListDataItems][google.cloud.aiplatform.v1beta1.DatasetService.ListDataItems].
Request message for
[JobService.ListDataLabelingJobs][google.cloud.aiplatform.v1beta1.JobService.ListDataLabelingJobs].
Response message for
[JobService.ListDataLabelingJobs][google.cloud.aiplatform.v1beta1.JobService.ListDataLabelingJobs].
Request message for
[DatasetService.ListDatasetVersions][google.cloud.aiplatform.v1beta1.DatasetService.ListDatasetVersions].
Response message for
[DatasetService.ListDatasetVersions][google.cloud.aiplatform.v1beta1.DatasetService.ListDatasetVersions].
Request message for
[DatasetService.ListDatasets][google.cloud.aiplatform.v1beta1.DatasetService.ListDatasets].
Response message for
[DatasetService.ListDatasets][google.cloud.aiplatform.v1beta1.DatasetService.ListDatasets].
Request message for ListDeploymentResourcePools method.
Response message for ListDeploymentResourcePools method.
Request message for
[EndpointService.ListEndpoints][google.cloud.aiplatform.v1beta1.EndpointService.ListEndpoints].
Response message for
[EndpointService.ListEndpoints][google.cloud.aiplatform.v1beta1.EndpointService.ListEndpoints].
Request message for
[FeaturestoreService.ListEntityTypes][google.cloud.aiplatform.v1beta1.FeaturestoreService.ListEntityTypes].
Response message for
[FeaturestoreService.ListEntityTypes][google.cloud.aiplatform.v1beta1.FeaturestoreService.ListEntityTypes].
Request message for
[MetadataService.ListExecutions][google.cloud.aiplatform.v1beta1.MetadataService.ListExecutions].
Response message for
[MetadataService.ListExecutions][google.cloud.aiplatform.v1beta1.MetadataService.ListExecutions].
Request message for
[ExtensionRegistryService.ListExtensions][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.ListExtensions].
Response message for
[ExtensionRegistryService.ListExtensions][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.ListExtensions]
Request message for
[FeatureRegistryService.ListFeatureGroups][google.cloud.aiplatform.v1beta1.FeatureRegistryService.ListFeatureGroups].
Response message for
[FeatureRegistryService.ListFeatureGroups][google.cloud.aiplatform.v1beta1.FeatureRegistryService.ListFeatureGroups].
Request message for
[FeatureOnlineStoreAdminService.ListFeatureOnlineStores][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.ListFeatureOnlineStores].
Response message for
[FeatureOnlineStoreAdminService.ListFeatureOnlineStores][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.ListFeatureOnlineStores].
Request message for
[FeatureOnlineStoreAdminService.ListFeatureViewSyncs][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.ListFeatureViewSyncs].
Response message for
[FeatureOnlineStoreAdminService.ListFeatureViewSyncs][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.ListFeatureViewSyncs].
Request message for
[FeatureOnlineStoreAdminService.ListFeatureViews][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.ListFeatureViews].
Response message for
[FeatureOnlineStoreAdminService.ListFeatureViews][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.ListFeatureViews].
Request message for
[FeaturestoreService.ListFeatures][google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeatures].
Request message for
[FeatureRegistryService.ListFeatures][google.cloud.aiplatform.v1beta1.FeatureRegistryService.ListFeatures].
Response message for
[FeaturestoreService.ListFeatures][google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeatures].
Response message for
[FeatureRegistryService.ListFeatures][google.cloud.aiplatform.v1beta1.FeatureRegistryService.ListFeatures].
Request message for
[FeaturestoreService.ListFeaturestores][google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeaturestores].
Response message for
[FeaturestoreService.ListFeaturestores][google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeaturestores].
Request message for
[JobService.ListHyperparameterTuningJobs][google.cloud.aiplatform.v1beta1.JobService.ListHyperparameterTuningJobs].
Response message for
[JobService.ListHyperparameterTuningJobs][google.cloud.aiplatform.v1beta1.JobService.ListHyperparameterTuningJobs]
Request message for
[IndexEndpointService.ListIndexEndpoints][google.cloud.aiplatform.v1beta1.IndexEndpointService.ListIndexEndpoints].
Response message for
[IndexEndpointService.ListIndexEndpoints][google.cloud.aiplatform.v1beta1.IndexEndpointService.ListIndexEndpoints].
Request message for
[IndexService.ListIndexes][google.cloud.aiplatform.v1beta1.IndexService.ListIndexes].
Response message for
[IndexService.ListIndexes][google.cloud.aiplatform.v1beta1.IndexService.ListIndexes].
Request message for
[MetadataService.ListMetadataSchemas][google.cloud.aiplatform.v1beta1.MetadataService.ListMetadataSchemas].
Response message for
[MetadataService.ListMetadataSchemas][google.cloud.aiplatform.v1beta1.MetadataService.ListMetadataSchemas].
Request message for
[MetadataService.ListMetadataStores][google.cloud.aiplatform.v1beta1.MetadataService.ListMetadataStores].
Response message for
[MetadataService.ListMetadataStores][google.cloud.aiplatform.v1beta1.MetadataService.ListMetadataStores].
Request message for
[JobService.ListModelDeploymentMonitoringJobs][google.cloud.aiplatform.v1beta1.JobService.ListModelDeploymentMonitoringJobs].
Response message for
[JobService.ListModelDeploymentMonitoringJobs][google.cloud.aiplatform.v1beta1.JobService.ListModelDeploymentMonitoringJobs].
Request message for
[ModelService.ListModelEvaluationSlices][google.cloud.aiplatform.v1beta1.ModelService.ListModelEvaluationSlices].
Response message for
[ModelService.ListModelEvaluationSlices][google.cloud.aiplatform.v1beta1.ModelService.ListModelEvaluationSlices].
Request message for
[ModelService.ListModelEvaluations][google.cloud.aiplatform.v1beta1.ModelService.ListModelEvaluations].
Response message for
[ModelService.ListModelEvaluations][google.cloud.aiplatform.v1beta1.ModelService.ListModelEvaluations].
Request message for
[ModelMonitoringService.ListModelMonitoringJobs][google.cloud.aiplatform.v1beta1.ModelMonitoringService.ListModelMonitoringJobs].
Response message for
[ModelMonitoringService.ListModelMonitoringJobs][google.cloud.aiplatform.v1beta1.ModelMonitoringService.ListModelMonitoringJobs].
Request message for
[ModelMonitoringService.ListModelMonitors][google.cloud.aiplatform.v1beta1.ModelMonitoringService.ListModelMonitors].
Response message for
[ModelMonitoringService.ListModelMonitors][google.cloud.aiplatform.v1beta1.ModelMonitoringService.ListModelMonitors]
Request message for
[ModelService.ListModelVersions][google.cloud.aiplatform.v1beta1.ModelService.ListModelVersions].
Response message for
[ModelService.ListModelVersions][google.cloud.aiplatform.v1beta1.ModelService.ListModelVersions]
Request message for
[ModelService.ListModels][google.cloud.aiplatform.v1beta1.ModelService.ListModels].
Response message for
[ModelService.ListModels][google.cloud.aiplatform.v1beta1.ModelService.ListModels]
Request message for
[JobService.ListNasJobs][google.cloud.aiplatform.v1beta1.JobService.ListNasJobs].
Response message for
[JobService.ListNasJobs][google.cloud.aiplatform.v1beta1.JobService.ListNasJobs]
Request message for
[JobService.ListNasTrialDetails][google.cloud.aiplatform.v1beta1.JobService.ListNasTrialDetails].
Response message for
[JobService.ListNasTrialDetails][google.cloud.aiplatform.v1beta1.JobService.ListNasTrialDetails]
Request message for [NotebookService.ListNotebookExecutionJobs]
Response message for [NotebookService.CreateNotebookExecutionJob]
Request message for
[NotebookService.ListNotebookRuntimeTemplates][google.cloud.aiplatform.v1beta1.NotebookService.ListNotebookRuntimeTemplates].
Response message for
[NotebookService.ListNotebookRuntimeTemplates][google.cloud.aiplatform.v1beta1.NotebookService.ListNotebookRuntimeTemplates].
Request message for
[NotebookService.ListNotebookRuntimes][google.cloud.aiplatform.v1beta1.NotebookService.ListNotebookRuntimes].
Response message for
[NotebookService.ListNotebookRuntimes][google.cloud.aiplatform.v1beta1.NotebookService.ListNotebookRuntimes].
Request message for
[VizierService.ListOptimalTrials][google.cloud.aiplatform.v1beta1.VizierService.ListOptimalTrials].
Response message for
[VizierService.ListOptimalTrials][google.cloud.aiplatform.v1beta1.VizierService.ListOptimalTrials].
Request message for [PersistentResourceService.ListPersistentResource][].
Response message for
[PersistentResourceService.ListPersistentResources][google.cloud.aiplatform.v1beta1.PersistentResourceService.ListPersistentResources]
Request message for
[PipelineService.ListPipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.ListPipelineJobs].
Response message for
[PipelineService.ListPipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.ListPipelineJobs]
Request message for
[ModelGardenService.ListPublisherModels][google.cloud.aiplatform.v1beta1.ModelGardenService.ListPublisherModels].
Response message for
[ModelGardenService.ListPublisherModels][google.cloud.aiplatform.v1beta1.ModelGardenService.ListPublisherModels].
Request message for
[VertexRagDataService.ListRagCorpora][google.cloud.aiplatform.v1beta1.VertexRagDataService.ListRagCorpora].
Response message for
[VertexRagDataService.ListRagCorpora][google.cloud.aiplatform.v1beta1.VertexRagDataService.ListRagCorpora].
Request message for
[VertexRagDataService.ListRagFiles][google.cloud.aiplatform.v1beta1.VertexRagDataService.ListRagFiles].
Response message for
[VertexRagDataService.ListRagFiles][google.cloud.aiplatform.v1beta1.VertexRagDataService.ListRagFiles].
Request message for
[ReasoningEngineService.ListReasoningEngines][google.cloud.aiplatform.v1beta1.ReasoningEngineService.ListReasoningEngines].
Response message for
[ReasoningEngineService.ListReasoningEngines][google.cloud.aiplatform.v1beta1.ReasoningEngineService.ListReasoningEngines]
Request message for
[DatasetService.ListSavedQueries][google.cloud.aiplatform.v1beta1.DatasetService.ListSavedQueries].
Response message for
[DatasetService.ListSavedQueries][google.cloud.aiplatform.v1beta1.DatasetService.ListSavedQueries].
Request message for
[ScheduleService.ListSchedules][google.cloud.aiplatform.v1beta1.ScheduleService.ListSchedules].
Response message for
[ScheduleService.ListSchedules][google.cloud.aiplatform.v1beta1.ScheduleService.ListSchedules]
Request message for
[SpecialistPoolService.ListSpecialistPools][google.cloud.aiplatform.v1beta1.SpecialistPoolService.ListSpecialistPools].
Response message for
[SpecialistPoolService.ListSpecialistPools][google.cloud.aiplatform.v1beta1.SpecialistPoolService.ListSpecialistPools].
Request message for
[VizierService.ListStudies][google.cloud.aiplatform.v1beta1.VizierService.ListStudies].
Response message for
[VizierService.ListStudies][google.cloud.aiplatform.v1beta1.VizierService.ListStudies].
Request message for
[TensorboardService.ListTensorboardExperiments][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboardExperiments].
Response message for
[TensorboardService.ListTensorboardExperiments][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboardExperiments].
Request message for
[TensorboardService.ListTensorboardRuns][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboardRuns].
Response message for
[TensorboardService.ListTensorboardRuns][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboardRuns].
Request message for
[TensorboardService.ListTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboardTimeSeries].
Response message for
[TensorboardService.ListTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboardTimeSeries].
Request message for
[TensorboardService.ListTensorboards][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboards].
Response message for
[TensorboardService.ListTensorboards][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboards].
Request message for
[PipelineService.ListTrainingPipelines][google.cloud.aiplatform.v1beta1.PipelineService.ListTrainingPipelines].
Response message for
[PipelineService.ListTrainingPipelines][google.cloud.aiplatform.v1beta1.PipelineService.ListTrainingPipelines]
Request message for
[VizierService.ListTrials][google.cloud.aiplatform.v1beta1.VizierService.ListTrials].
Response message for
[VizierService.ListTrials][google.cloud.aiplatform.v1beta1.VizierService.ListTrials].
Request message for
[GenAiTuningService.ListTuningJobs][google.cloud.aiplatform.v1beta1.GenAiTuningService.ListTuningJobs].
Response message for
[GenAiTuningService.ListTuningJobs][google.cloud.aiplatform.v1beta1.GenAiTuningService.ListTuningJobs]
Request message for
[VizierService.LookupStudy][google.cloud.aiplatform.v1beta1.VizierService.LookupStudy].
Specification of a single machine.
Manual batch tuning parameters.
A message representing a Measurement of a Trial. A Measurement contains
the Metrics got by executing a Trial using suggested hyperparameter
values.
Request message for
[ModelService.MergeVersionAliases][google.cloud.aiplatform.v1beta1.ModelService.MergeVersionAliases].
Instance of a general MetadataSchema.
Instance of a metadata store. Contains a set of metadata that can be
queried.
Represents one resource that exists in automl.googleapis.com,
datalabeling.googleapis.com or ml.googleapis.com.
Config of migrating one resource from automl.googleapis.com,
datalabeling.googleapis.com and ml.googleapis.com to Vertex AI.
Describes a successfully migrated resource.
A trained machine learning Model.
ModelDeploymentMonitoringBigQueryTable specifies the BigQuery table name
as well as some information of the logs stored in this table.
Represents a job that runs periodically to monitor the deployed models in an
endpoint. It will analyze the logged training & prediction data to detect any
abnormal behaviors.
ModelDeploymentMonitoringObjectiveConfig contains the pair of
deployed_model_id to ModelMonitoringObjectiveConfig.
The config for scheduling monitoring job.
A collection of metrics calculated by comparing Model’s predictions on all of
the test data against annotations from the test data.
A collection of metrics calculated by comparing Model’s predictions on a
slice of the test data against ground truth annotations.
Aggregated explanation metrics for a Model over a set of instances.
Contains information about the source of the models generated from Model
Garden.
Vertex AI Model Monitoring Service serves as a central hub for the analysis
and visualization of data quality and performance related to models.
ModelMonitor stands as a top level resource for overseeing your model
monitoring tasks.
Represents a single monitoring alert. This is currently used in the
SearchModelMonitoringAlerts api, thus the alert wrapped in this message
belongs to the resource asked in the request.
Monitoring alert triggered condition.
The alert config for model monitoring.
Represents a single model monitoring anomaly.
The model monitoring configuration used for Batch Prediction Job.
Model monitoring data input spec.
Represents a model monitoring job that analyze dataset using different
monitoring algorithm.
Represent the execution details of the job.
Notification spec(email, notification channel) for model monitoring
statistics/alerts.
The objective configuration for model monitoring, including the information
needed to detect anomalies for one particular model.
Monitoring objectives spec.
Specification for the export destination of monitoring results, including
metrics, logs, etc.
The Model Monitoring Schema definition.
Monitoring monitoring job spec. It outlines the specifications for monitoring
objectives, notifications, and result exports.
Represents the collection of statistics for a metric.
Statistics and anomalies generated by Model Monitoring.
Represents a single statistics data point.
A collection of data points that describes the time-varying values of a
tabular metric.
Detail description of the source information of the model.
Runtime operation information for
[IndexEndpointService.MutateDeployedIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.MutateDeployedIndex].
Request message for
[IndexEndpointService.MutateDeployedIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.MutateDeployedIndex].
Response message for
[IndexEndpointService.MutateDeployedIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.MutateDeployedIndex].
Runtime operation information for
[EndpointService.MutateDeployedModel][google.cloud.aiplatform.v1beta1.EndpointService.MutateDeployedModel].
Request message for
[EndpointService.MutateDeployedModel][google.cloud.aiplatform.v1beta1.EndpointService.MutateDeployedModel].
Response message for
[EndpointService.MutateDeployedModel][google.cloud.aiplatform.v1beta1.EndpointService.MutateDeployedModel].
Represents a Neural Architecture Search (NAS) job.
Represents a uCAIP NasJob output.
Represents the spec of a NasJob.
Represents a uCAIP NasJob trial.
Represents a NasTrial details along with its parameters. If there is a
corresponding train NasTrial, the train NasTrial is also returned.
A query to find a number of similar entities.
Runtime operation metadata with regard to Matching Engine Index.
Nearest neighbors for one query.
Neighbors for example-based explanations.
Network spec.
Represents a mount configuration for Network File System (NFS) to mount.
The euc configuration of NotebookRuntimeTemplate.
NotebookExecutionJob represents an instance of a notebook execution.
The idle shutdown configuration of NotebookRuntimeTemplate, which contains
the idle_timeout as required field.
A runtime is a virtual machine allocated to a particular user for a
particular Notebook file on temporary basis with lifetime limited to 24
hours.
A template that specifies runtime configurations such as machine type,
runtime version, network configurations, etc.
Multiple runtimes can be created from a runtime template.
Points to a NotebookRuntimeTemplateRef.
Input for pairwise metric.
Pairwise metric instance. Usually one instance corresponds to one row in an
evaluation dataset.
Spec for pairwise metric result.
Spec for pairwise metric.
Input for pairwise question answering quality metric.
Spec for pairwise question answering quality instance.
Spec for pairwise question answering quality result.
Spec for pairwise question answering quality score metric.
Input for pairwise summarization quality metric.
Spec for pairwise summarization quality instance.
Spec for pairwise summarization quality result.
Spec for pairwise summarization quality score metric.
A datatype containing media that is part of a multi-part Content
message.
Request message for
[JobService.PauseModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.PauseModelDeploymentMonitoringJob].
Request message for
[ScheduleService.PauseSchedule][google.cloud.aiplatform.v1beta1.ScheduleService.PauseSchedule].
Represents long-lasting resources that are dedicated to users to runs custom
workloads.
A PersistentResource can have multiple node pools and each node
pool can have its own machine spec.
An instance of a machine learning PipelineJob.
The runtime detail of PipelineJob.
The runtime detail of a task execution.
The runtime detail of a pipeline executor.
Pipeline template metadata if
[PipelineJob.template_uri][google.cloud.aiplatform.v1beta1.PipelineJob.template_uri]
is from supported template registry. Currently, the only supported registry
is Artifact Registry.
Input for pointwise metric.
Pointwise metric instance. Usually one instance corresponds to one row in an
evaluation dataset.
Spec for pointwise metric result.
Spec for pointwise metric.
Represents a network port in a container.
Assigns input data to training, validation, and test sets based on the
value of a provided key.
Metadata for PredictLongRunning long running operations.
Response message for [PredictionService.PredictLongRunning]
Request message for
[PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict].
Configuration for logging request-response to a BigQuery table.
Response message for
[PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict].
Contains the schemata used in Model’s predictions and explanations via
[PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict],
[PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain]
and [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob].
Preset configuration for example-based explanations
PrivateEndpoints proto is used to provide paths for users to send
requests privately.
To send request via private service access, use predict_http_uri,
explain_http_uri or health_http_uri. To send request via private service
connect, use service_attachment.
Represents configuration for private service connect.
Probe describes a health check to be performed against a container to
determine whether it is alive or ready to receive traffic.
PscAutomatedEndpoints defines the output of the forwarding rule
automatically created by each PscAutomationConfig.
Configuration for PSC-I.
A Model Garden Publisher Model.
Details of operations that perform
[MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1beta1.MetadataService.PurgeArtifacts].
Request message for
[MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1beta1.MetadataService.PurgeArtifacts].
Response message for
[MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1beta1.MetadataService.PurgeArtifacts].
Details of operations that perform
[MetadataService.PurgeContexts][google.cloud.aiplatform.v1beta1.MetadataService.PurgeContexts].
Request message for
[MetadataService.PurgeContexts][google.cloud.aiplatform.v1beta1.MetadataService.PurgeContexts].
Response message for
[MetadataService.PurgeContexts][google.cloud.aiplatform.v1beta1.MetadataService.PurgeContexts].
Details of operations that perform
[MetadataService.PurgeExecutions][google.cloud.aiplatform.v1beta1.MetadataService.PurgeExecutions].
Request message for
[MetadataService.PurgeExecutions][google.cloud.aiplatform.v1beta1.MetadataService.PurgeExecutions].
Response message for
[MetadataService.PurgeExecutions][google.cloud.aiplatform.v1beta1.MetadataService.PurgeExecutions].
The spec of a Python packaged code.
Request message for
[MetadataService.QueryArtifactLineageSubgraph][google.cloud.aiplatform.v1beta1.MetadataService.QueryArtifactLineageSubgraph].
Request message for
[MetadataService.QueryContextLineageSubgraph][google.cloud.aiplatform.v1beta1.MetadataService.QueryContextLineageSubgraph].
Request message for QueryDeployedModels method.
Response message for QueryDeployedModels method.
Request message for
[MetadataService.QueryExecutionInputsAndOutputs][google.cloud.aiplatform.v1beta1.MetadataService.QueryExecutionInputsAndOutputs].
Request message for
[ExtensionExecutionService.QueryExtension][google.cloud.aiplatform.v1beta1.ExtensionExecutionService.QueryExtension].
Response message for
[ExtensionExecutionService.QueryExtension][google.cloud.aiplatform.v1beta1.ExtensionExecutionService.QueryExtension].
Request message for [ReasoningEngineExecutionService.Query][].
Response message for [ReasoningEngineExecutionService.Query][]
Input for question answering correctness metric.
Spec for question answering correctness instance.
Spec for question answering correctness result.
Spec for question answering correctness metric.
Input for question answering helpfulness metric.
Spec for question answering helpfulness instance.
Spec for question answering helpfulness result.
Spec for question answering helpfulness metric.
Input for question answering quality metric.
Spec for question answering quality instance.
Spec for question answering quality result.
Spec for question answering quality score metric.
Input for question answering relevance metric.
Spec for question answering relevance instance.
Spec for question answering relevance result.
Spec for question answering relevance metric.
Relevant contexts for one query.
A RagCorpus is a RagFile container and a project can have multiple
RagCorpora.
Config for the embedding model to use for RAG.
A RagFile contains user data for chunking, embedding and indexing.
Specifies the size and overlap of chunks for RagFiles.
Specifies the parsing config for RagFiles.
A query to retrieve relevant contexts.
Config for the Vector DB to use for RAG.
Request message for
[PredictionService.RawPredict][google.cloud.aiplatform.v1beta1.PredictionService.RawPredict].
Configuration for the Ray OSS Logs.
Configuration for the Ray metrics.
Configuration information for the Ray cluster.
For experimental launch, Ray cluster creation and Persistent
cluster creation are 1:1 mapping: We will provision all the nodes within the
Persistent cluster as Ray nodes.
Request message for
[FeaturestoreOnlineServingService.ReadFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreOnlineServingService.ReadFeatureValues].
Response message for
[FeaturestoreOnlineServingService.ReadFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreOnlineServingService.ReadFeatureValues].
The request message for
[MatchService.ReadIndexDatapoints][google.cloud.aiplatform.v1beta1.MatchService.ReadIndexDatapoints].
The response message for
[MatchService.ReadIndexDatapoints][google.cloud.aiplatform.v1beta1.MatchService.ReadIndexDatapoints].
Request message for
[TensorboardService.ReadTensorboardBlobData][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardBlobData].
Response message for
[TensorboardService.ReadTensorboardBlobData][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardBlobData].
Request message for
[TensorboardService.ReadTensorboardSize][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardSize].
Response message for
[TensorboardService.ReadTensorboardSize][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardSize].
Request message for
[TensorboardService.ReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardTimeSeriesData].
Response message for
[TensorboardService.ReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardTimeSeriesData].
Request message for
[TensorboardService.ReadTensorboardUsage][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardUsage].
Response message for
[TensorboardService.ReadTensorboardUsage][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardUsage].
ReasoningEngine provides a customizable runtime for models to determine
which actions to take and in which order.
ReasoningEngine configurations
Details of operations that perform reboot PersistentResource.
Request message for
[PersistentResourceService.RebootPersistentResource][google.cloud.aiplatform.v1beta1.PersistentResourceService.RebootPersistentResource].
Request message for
[MetadataService.DeleteContextChildrenRequest][].
Response message for
[MetadataService.RemoveContextChildren][google.cloud.aiplatform.v1beta1.MetadataService.RemoveContextChildren].
Request message for
[IndexService.RemoveDatapoints][google.cloud.aiplatform.v1beta1.IndexService.RemoveDatapoints]
Response message for
[IndexService.RemoveDatapoints][google.cloud.aiplatform.v1beta1.IndexService.RemoveDatapoints]
A ReservationAffinity can be used to configure a Vertex AI resource (e.g., a
DeployedModel) to draw its Compute Engine resources from a Shared
Reservation, or exclusively from on-demand capacity.
Represents the spec of a group of resources of the same type,
for example machine type, disk, and accelerators, in a PersistentResource.
Persistent Cluster runtime information as output
Configuration for the runtime on a PersistentResource instance, including
but not limited to:
Statistics information about resource consumption.
Runtime operation information for
[DatasetService.RestoreDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.RestoreDatasetVersion].
Request message for
[DatasetService.RestoreDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.RestoreDatasetVersion].
Request message for
[JobService.ResumeModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.ResumeModelDeploymentMonitoringJob].
Request message for
[ScheduleService.ResumeSchedule][google.cloud.aiplatform.v1beta1.ScheduleService.ResumeSchedule].
Defines a retrieval tool that model can call to access external knowledge.
Request message for
[VertexRagService.RetrieveContexts][google.cloud.aiplatform.v1beta1.VertexRagService.RetrieveContexts].
Response message for
[VertexRagService.RetrieveContexts][google.cloud.aiplatform.v1beta1.VertexRagService.RetrieveContexts].
Input for rouge metric.
Spec for rouge instance.
Rouge metric value for an instance.
Results for rouge metric.
Spec for rouge score metric - calculates the recall of n-grams in prediction
as compared to reference - returns a score ranging between 0 and 1.
Runtime configuration to run the extension.
Input for safety metric.
Spec for safety instance.
Safety rating corresponding to the generated content.
Spec for safety result.
Safety settings.
Spec for safety metric.
Active learning data sampling config. For every active learning labeling
iteration, it will select a batch of data based on the sampling strategy.
An attribution method that approximates Shapley values for features that
contribute to the label being predicted. A sampling strategy is used to
approximate the value rather than considering all subsets of features.
Sampling Strategy for logging, can be for both training and prediction
dataset.
A SavedQuery is a view of the dataset. It references a subset of annotations
by problem type and filters.
One point viewable on a scalar metric plot.
An instance of a Schedule periodically schedules runs to make API calls based
on user specified time specification and API request type.
All parameters related to queuing and scheduling of custom jobs.
Schema is used to define the format of input/output data. Represents a select
subset of an
OpenAPI 3.0 schema
object. More fields may be
added in the future as needed.
Request message for
[DatasetService.SearchDataItems][google.cloud.aiplatform.v1beta1.DatasetService.SearchDataItems].
Response message for
[DatasetService.SearchDataItems][google.cloud.aiplatform.v1beta1.DatasetService.SearchDataItems].
Google search entry point.
Request message for
[FeaturestoreService.SearchFeatures][google.cloud.aiplatform.v1beta1.FeaturestoreService.SearchFeatures].
Response message for
[FeaturestoreService.SearchFeatures][google.cloud.aiplatform.v1beta1.FeaturestoreService.SearchFeatures].
Request message for
[MigrationService.SearchMigratableResources][google.cloud.aiplatform.v1beta1.MigrationService.SearchMigratableResources].
Response message for
[MigrationService.SearchMigratableResources][google.cloud.aiplatform.v1beta1.MigrationService.SearchMigratableResources].
Request message for
[JobService.SearchModelDeploymentMonitoringStatsAnomalies][google.cloud.aiplatform.v1beta1.JobService.SearchModelDeploymentMonitoringStatsAnomalies].
Response message for
[JobService.SearchModelDeploymentMonitoringStatsAnomalies][google.cloud.aiplatform.v1beta1.JobService.SearchModelDeploymentMonitoringStatsAnomalies].
Request message for
[ModelMonitoringService.SearchModelMonitoringAlerts][google.cloud.aiplatform.v1beta1.ModelMonitoringService.SearchModelMonitoringAlerts].
Response message for
[ModelMonitoringService.SearchModelMonitoringAlerts][google.cloud.aiplatform.v1beta1.ModelMonitoringService.SearchModelMonitoringAlerts].
Filter for searching ModelMonitoringStats.
Request message for
[ModelMonitoringService.SearchModelMonitoringStats][google.cloud.aiplatform.v1beta1.ModelMonitoringService.SearchModelMonitoringStats].
Response message for
[ModelMonitoringService.SearchModelMonitoringStats][google.cloud.aiplatform.v1beta1.ModelMonitoringService.SearchModelMonitoringStats].
The request message for
[FeatureOnlineStoreService.SearchNearestEntities][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreService.SearchNearestEntities].
Response message for
[FeatureOnlineStoreService.SearchNearestEntities][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreService.SearchNearestEntities]
Segment of the content.
Configuration for the use of custom service account to run the workloads.
The Slack source for the ImportRagFilesRequest.
Config for SmoothGrad approximation of gradients.
SpecialistPool represents customers’ own workforce to work on their data
labeling jobs. It includes a group of specialist managers and workers.
Managers are responsible for managing the workers in this pool as well as
customers’ data labeling jobs associated with this pool. Customers create
specialist pool as well as start data labeling jobs on Cloud, managers and
workers handle the jobs using CrowdCompute console.
Metadata information for
[NotebookService.StartNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.StartNotebookRuntime].
Request message for
[NotebookService.StartNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.StartNotebookRuntime].
Response message for
[NotebookService.StartNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.StartNotebookRuntime].
Request message for
[VizierService.StopTrial][google.cloud.aiplatform.v1beta1.VizierService.StopTrial].
Assigns input data to the training, validation, and test sets so that the
distribution of values found in the categorical column (as specified by the
key
field) is mirrored within each split. The fraction values determine
the relative sizes of the splits.
Request message for
[PredictionService.StreamDirectPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamDirectPredict].
Response message for
[PredictionService.StreamDirectPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamDirectPredict].
Request message for
[PredictionService.StreamDirectRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamDirectRawPredict].
Response message for
[PredictionService.StreamDirectRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamDirectRawPredict].
Request message for
[PredictionService.StreamRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamRawPredict].
Request message for
[FeatureOnlineStoreService.StreamingFetchFeatureValues][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreService.StreamingFetchFeatureValues].
For the entities requested, all features under the requested feature view
will be returned.
Response message for
[FeatureOnlineStoreService.StreamingFetchFeatureValues][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreService.StreamingFetchFeatureValues].
Request message for
[PredictionService.StreamingPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamingPredict].
Response message for
[PredictionService.StreamingPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamingPredict].
Request message for
[PredictionService.StreamingRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamingRawPredict].
Response message for
[PredictionService.StreamingRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamingRawPredict].
Request message for
[FeaturestoreOnlineServingService.StreamingFeatureValuesRead][].
A list of string values.
One field of a Struct (or object) type feature value.
Struct (or object) type feature value.
A message representing a Study.
Represents specification of a Study.
Time-based Constraint for Study
Details of operations that perform Trials suggestion.
Request message for
[VizierService.SuggestTrials][google.cloud.aiplatform.v1beta1.VizierService.SuggestTrials].
Response message for
[VizierService.SuggestTrials][google.cloud.aiplatform.v1beta1.VizierService.SuggestTrials].
Input for summarization helpfulness metric.
Spec for summarization helpfulness instance.
Spec for summarization helpfulness result.
Spec for summarization helpfulness score metric.
Input for summarization quality metric.
Spec for summarization quality instance.
Spec for summarization quality result.
Spec for summarization quality score metric.
Input for summarization verbosity metric.
Spec for summarization verbosity instance.
Spec for summarization verbosity result.
Spec for summarization verbosity score metric.
Hyperparameters for SFT.
Tuning data statistics for Supervised Tuning.
Dataset distribution for Supervised Tuning.
Tuning Spec for Supervised Tuning.
Request message for
[FeatureOnlineStoreAdminService.SyncFeatureView][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.SyncFeatureView].
Respose message for
[FeatureOnlineStoreAdminService.SyncFeatureView][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.SyncFeatureView].
A tensor value type.
Tensorboard is a physical database that stores users’ training metrics.
A default Tensorboard is provided in each region of a Google Cloud project.
If needed users can also create extra Tensorboards in their projects.
One blob (e.g, image, graph) viewable on a blob metric plot.
One point viewable on a blob metric plot, but mostly just a wrapper message
to work around repeated fields can’t be used directly within oneof
fields.
A TensorboardExperiment is a group of TensorboardRuns, that are typically the
results of a training job run, in a Tensorboard.
TensorboardRun maps to a specific execution of a training job with a given
set of hyperparameter values, model definition, dataset, etc
One point viewable on a tensor metric plot.
TensorboardTimeSeries maps to times series produced in training runs
The storage details for TFRecord output content.
The config for feature monitoring threshold.
All the data stored in a TensorboardTimeSeries.
A TensorboardTimeSeries data point.
Assigns input data to training, validation, and test sets based on a
provided timestamps. The youngest data pieces are assigned to training set,
next to validation set, and the oldest to the test set.
Tokens info with a list of tokens and the corresponding list of token ids.
Tool details that the model may use to generate response.
Input for tool call valid metric.
Spec for tool call valid instance.
Tool call valid metric value for an instance.
Results for tool call valid metric.
Spec for tool call valid metric.
Tool config. This config is shared for all tools provided in the request.
Input for tool name match metric.
Spec for tool name match instance.
Tool name match metric value for an instance.
Results for tool name match metric.
Spec for tool name match metric.
Input for tool parameter key match metric.
Spec for tool parameter key match instance.
Tool parameter key match metric value for an instance.
Results for tool parameter key match metric.
Spec for tool parameter key match metric.
Input for tool parameter key value match metric.
Spec for tool parameter key value match instance.
Tool parameter key value match metric value for an instance.
Results for tool parameter key value match metric.
Spec for tool parameter key value match metric.
A single example of the tool usage.
CMLE training config. For every active learning labeling iteration, system
will train a machine learning model on CMLE. The trained model will be used
by data sampling algorithm to select DataItems.
The TrainingPipeline orchestrates tasks associated with training a Model. It
always executes the training task, and optionally may also
export data from Vertex AI’s Dataset which becomes the training input,
[upload][google.cloud.aiplatform.v1beta1.ModelService.UploadModel] the Model
to Vertex AI, and evaluate the Model.
A message representing a Trial. A Trial contains a unique set of Parameters
that has been or will be evaluated, along with the objective metrics got by
running the Trial.
The Model Registry Model and Online Prediction Endpoint assiociated with
this [TuningJob][google.cloud.aiplatform.v1.TuningJob].
The tuning data statistic values for
[TuningJob][google.cloud.aiplatform.v1.TuningJob].
Represents a TuningJob that runs with Google owned models.
Runtime operation information for
[IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.UndeployIndex].
Request message for
[IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.UndeployIndex].
Response message for
[IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.UndeployIndex].
Runtime operation information for
[EndpointService.UndeployModel][google.cloud.aiplatform.v1beta1.EndpointService.UndeployModel].
Request message for
[EndpointService.UndeployModel][google.cloud.aiplatform.v1beta1.EndpointService.UndeployModel].
Response message for
[EndpointService.UndeployModel][google.cloud.aiplatform.v1beta1.EndpointService.UndeployModel].
Contains model information necessary to perform batch prediction without
requiring a full model import.
Request message for
[MetadataService.UpdateArtifact][google.cloud.aiplatform.v1beta1.MetadataService.UpdateArtifact].
Request message for
[GenAiCacheService.UpdateCachedContent][google.cloud.aiplatform.v1beta1.GenAiCacheService.UpdateCachedContent].
Only expire_time or ttl can be updated.
Request message for
[MetadataService.UpdateContext][google.cloud.aiplatform.v1beta1.MetadataService.UpdateContext].
Request message for
[DatasetService.UpdateDataset][google.cloud.aiplatform.v1beta1.DatasetService.UpdateDataset].
Request message for
[DatasetService.UpdateDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.UpdateDatasetVersion].
Runtime operation information for UpdateDeploymentResourcePool method.
Request message for UpdateDeploymentResourcePool method.
Request message for
[EndpointService.UpdateEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.UpdateEndpoint].
Request message for
[FeaturestoreService.UpdateEntityType][google.cloud.aiplatform.v1beta1.FeaturestoreService.UpdateEntityType].
Request message for
[MetadataService.UpdateExecution][google.cloud.aiplatform.v1beta1.MetadataService.UpdateExecution].
Runtime operation information for
[ModelService.UpdateExplanationDataset][google.cloud.aiplatform.v1beta1.ModelService.UpdateExplanationDataset].
Request message for
[ModelService.UpdateExplanationDataset][google.cloud.aiplatform.v1beta1.ModelService.UpdateExplanationDataset].
Response message of
[ModelService.UpdateExplanationDataset][google.cloud.aiplatform.v1beta1.ModelService.UpdateExplanationDataset]
operation.
Request message for
[ExtensionRegistryService.UpdateExtension][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.UpdateExtension].
Details of operations that perform update FeatureGroup.
Request message for
[FeatureRegistryService.UpdateFeatureGroup][google.cloud.aiplatform.v1beta1.FeatureRegistryService.UpdateFeatureGroup].
Details of operations that perform update FeatureOnlineStore.
Request message for
[FeatureOnlineStoreAdminService.UpdateFeatureOnlineStore][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.UpdateFeatureOnlineStore].
Details of operations that perform update Feature.
Request message for
[FeaturestoreService.UpdateFeature][google.cloud.aiplatform.v1beta1.FeaturestoreService.UpdateFeature].
Request message for
[FeatureRegistryService.UpdateFeature][google.cloud.aiplatform.v1beta1.FeatureRegistryService.UpdateFeature].
Details of operations that perform update FeatureView.
Request message for
[FeatureOnlineStoreAdminService.UpdateFeatureView][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.UpdateFeatureView].
Details of operations that perform update Featurestore.
Request message for
[FeaturestoreService.UpdateFeaturestore][google.cloud.aiplatform.v1beta1.FeaturestoreService.UpdateFeaturestore].
Request message for
[IndexEndpointService.UpdateIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.UpdateIndexEndpoint].
Runtime operation information for
[IndexService.UpdateIndex][google.cloud.aiplatform.v1beta1.IndexService.UpdateIndex].
Request message for
[IndexService.UpdateIndex][google.cloud.aiplatform.v1beta1.IndexService.UpdateIndex].
Runtime operation information for
[JobService.UpdateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.UpdateModelDeploymentMonitoringJob].
Request message for
[JobService.UpdateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.UpdateModelDeploymentMonitoringJob].
Runtime operation information for
[ModelMonitoringService.UpdateModelMonitor][google.cloud.aiplatform.v1beta1.ModelMonitoringService.UpdateModelMonitor].
Request message for
[ModelMonitoringService.UpdateModelMonitor][google.cloud.aiplatform.v1beta1.ModelMonitoringService.UpdateModelMonitor].
Request message for
[ModelService.UpdateModel][google.cloud.aiplatform.v1beta1.ModelService.UpdateModel].
Request message for
[NotebookService.UpdateNotebookRuntimeTemplate][google.cloud.aiplatform.v1beta1.NotebookService.UpdateNotebookRuntimeTemplate].
Details of operations that perform update PersistentResource.
Request message for UpdatePersistentResource method.
Runtime operation information for
[VertexRagDataService.UpdateRagCorpus][google.cloud.aiplatform.v1beta1.VertexRagDataService.UpdateRagCorpus].
Request message for
[VertexRagDataService.UpdateRagCorpus][google.cloud.aiplatform.v1beta1.VertexRagDataService.UpdateRagCorpus].
Details of
[ReasoningEngineService.UpdateReasoningEngine][google.cloud.aiplatform.v1beta1.ReasoningEngineService.UpdateReasoningEngine]
operation.
Request message for
[ReasoningEngineService.UpdateReasoningEngine][google.cloud.aiplatform.v1beta1.ReasoningEngineService.UpdateReasoningEngine].
Request message for
[ScheduleService.UpdateSchedule][google.cloud.aiplatform.v1beta1.ScheduleService.UpdateSchedule].
Runtime operation metadata for
[SpecialistPoolService.UpdateSpecialistPool][google.cloud.aiplatform.v1beta1.SpecialistPoolService.UpdateSpecialistPool].
Request message for
[SpecialistPoolService.UpdateSpecialistPool][google.cloud.aiplatform.v1beta1.SpecialistPoolService.UpdateSpecialistPool].
Request message for
[TensorboardService.UpdateTensorboardExperiment][google.cloud.aiplatform.v1beta1.TensorboardService.UpdateTensorboardExperiment].
Details of operations that perform update Tensorboard.
Request message for
[TensorboardService.UpdateTensorboard][google.cloud.aiplatform.v1beta1.TensorboardService.UpdateTensorboard].
Request message for
[TensorboardService.UpdateTensorboardRun][google.cloud.aiplatform.v1beta1.TensorboardService.UpdateTensorboardRun].
Request message for
[TensorboardService.UpdateTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.UpdateTensorboardTimeSeries].
Metadata information for
[NotebookService.UpgradeNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.UpgradeNotebookRuntime].
Request message for
[NotebookService.UpgradeNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.UpgradeNotebookRuntime].
Response message for
[NotebookService.UpgradeNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.UpgradeNotebookRuntime].
Details of
[ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel]
operation.
Request message for
[ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel].
Response message of
[ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel]
operation.
Config for uploading RagFile.
Request message for
[VertexRagDataService.UploadRagFile][google.cloud.aiplatform.v1beta1.VertexRagDataService.UploadRagFile].
Response message for
[VertexRagDataService.UploadRagFile][google.cloud.aiplatform.v1beta1.VertexRagDataService.UploadRagFile].
Request message for
[IndexService.UpsertDatapoints][google.cloud.aiplatform.v1beta1.IndexService.UpsertDatapoints]
Response message for
[IndexService.UpsertDatapoints][google.cloud.aiplatform.v1beta1.IndexService.UpsertDatapoints]
References an API call. It contains more information about long running
operation and Jobs that are triggered by the API call.
Value is the value of the field.
Retrieve from Vertex RAG Store for grounding.
Metadata describes the input video content.
Represents the spec of a worker pool in a job.
Contains Feature values to be written for a specific entity.
Request message for
[FeaturestoreOnlineServingService.WriteFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreOnlineServingService.WriteFeatureValues].
Response message for
[FeaturestoreOnlineServingService.WriteFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreOnlineServingService.WriteFeatureValues].
Request message for
[TensorboardService.WriteTensorboardExperimentData][google.cloud.aiplatform.v1beta1.TensorboardService.WriteTensorboardExperimentData].
Response message for
[TensorboardService.WriteTensorboardExperimentData][google.cloud.aiplatform.v1beta1.TensorboardService.WriteTensorboardExperimentData].
Request message for
[TensorboardService.WriteTensorboardRunData][google.cloud.aiplatform.v1beta1.TensorboardService.WriteTensorboardRunData].
Response message for
[TensorboardService.WriteTensorboardRunData][google.cloud.aiplatform.v1beta1.TensorboardService.WriteTensorboardRunData].
An explanation method that redistributes Integrated Gradients
attributions to segmented regions, taking advantage of the model’s fully
differentiable structure. Refer to this paper for more details:
https://arxiv.org/abs/1906.02825