Struct google_api_proto::google::cloud::aiplatform::v1beta1::InputDataConfig
source · pub struct InputDataConfig {
pub dataset_id: String,
pub annotations_filter: String,
pub annotation_schema_uri: String,
pub saved_query_id: String,
pub persist_ml_use_assignment: bool,
pub split: Option<Split>,
pub destination: Option<Destination>,
}
Expand description
Specifies Vertex AI owned input data to be used for training, and possibly evaluating, the Model.
Fields§
§dataset_id: String
Required. The ID of the Dataset in the same Project and Location which data will be used to train the Model. The Dataset must use schema compatible with Model being trained, and what is compatible should be described in the used TrainingPipeline’s [training_task_definition] [google.cloud.aiplatform.v1beta1.TrainingPipeline.training_task_definition]. For tabular Datasets, all their data is exported to training, to pick and choose from.
annotations_filter: String
Applicable only to Datasets that have DataItems and Annotations.
A filter on Annotations of the Dataset. Only Annotations that both match this filter and belong to DataItems not ignored by the split method are used in respectively training, validation or test role, depending on the role of the DataItem they are on (for the auto-assigned that role is decided by Vertex AI). A filter with same syntax as the one used in [ListAnnotations][google.cloud.aiplatform.v1beta1.DatasetService.ListAnnotations] may be used, but note here it filters across all Annotations of the Dataset, and not just within a single DataItem.
annotation_schema_uri: String
Applicable only to custom training with Datasets that have DataItems and Annotations.
Cloud Storage URI that points to a YAML file describing the annotation schema. The schema is defined as an OpenAPI 3.0.2 Schema Object. The schema files that can be used here are found in gs://google-cloud-aiplatform/schema/dataset/annotation/ , note that the chosen schema must be consistent with [metadata][google.cloud.aiplatform.v1beta1.Dataset.metadata_schema_uri] of the Dataset specified by [dataset_id][google.cloud.aiplatform.v1beta1.InputDataConfig.dataset_id].
Only Annotations that both match this schema and belong to DataItems not ignored by the split method are used in respectively training, validation or test role, depending on the role of the DataItem they are on.
When used in conjunction with [annotations_filter][google.cloud.aiplatform.v1beta1.InputDataConfig.annotations_filter], the Annotations used for training are filtered by both [annotations_filter][google.cloud.aiplatform.v1beta1.InputDataConfig.annotations_filter] and [annotation_schema_uri][google.cloud.aiplatform.v1beta1.InputDataConfig.annotation_schema_uri].
saved_query_id: String
Only applicable to Datasets that have SavedQueries.
The ID of a SavedQuery (annotation set) under the Dataset specified by [dataset_id][google.cloud.aiplatform.v1beta1.InputDataConfig.dataset_id] used for filtering Annotations for training.
Only Annotations that are associated with this SavedQuery are used in respectively training. When used in conjunction with [annotations_filter][google.cloud.aiplatform.v1beta1.InputDataConfig.annotations_filter], the Annotations used for training are filtered by both [saved_query_id][google.cloud.aiplatform.v1beta1.InputDataConfig.saved_query_id] and [annotations_filter][google.cloud.aiplatform.v1beta1.InputDataConfig.annotations_filter].
Only one of [saved_query_id][google.cloud.aiplatform.v1beta1.InputDataConfig.saved_query_id] and [annotation_schema_uri][google.cloud.aiplatform.v1beta1.InputDataConfig.annotation_schema_uri] should be specified as both of them represent the same thing: problem type.
persist_ml_use_assignment: bool
Whether to persist the ML use assignment to data item system labels.
split: Option<Split>
The instructions how the input data should be split between the training, validation and test sets. If no split type is provided, the [fraction_split][google.cloud.aiplatform.v1beta1.InputDataConfig.fraction_split] is used by default.
destination: Option<Destination>
Only applicable to Custom and Hyperparameter Tuning TrainingPipelines.
The destination of the training data to be written to.
Supported destination file formats:
- For non-tabular data: “jsonl”.
- For tabular data: “csv” and “bigquery”.
The following Vertex AI environment variables are passed to containers or python modules of the training task when this field is set:
- AIP_DATA_FORMAT : Exported data format.
- AIP_TRAINING_DATA_URI : Sharded exported training data uris.
- AIP_VALIDATION_DATA_URI : Sharded exported validation data uris.
- AIP_TEST_DATA_URI : Sharded exported test data uris.
Trait Implementations§
source§impl Clone for InputDataConfig
impl Clone for InputDataConfig
source§fn clone(&self) -> InputDataConfig
fn clone(&self) -> InputDataConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for InputDataConfig
impl Debug for InputDataConfig
source§impl Default for InputDataConfig
impl Default for InputDataConfig
source§impl Message for InputDataConfig
impl Message for InputDataConfig
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
.source§impl PartialEq for InputDataConfig
impl PartialEq for InputDataConfig
source§fn eq(&self, other: &InputDataConfig) -> bool
fn eq(&self, other: &InputDataConfig) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for InputDataConfig
Auto Trait Implementations§
impl Freeze for InputDataConfig
impl RefUnwindSafe for InputDataConfig
impl Send for InputDataConfig
impl Sync for InputDataConfig
impl Unpin for InputDataConfig
impl UnwindSafe for InputDataConfig
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request