Struct google_api_proto::google::cloud::aiplatform::v1beta1::ModelMonitoringSchema
source · pub struct ModelMonitoringSchema {
pub feature_fields: Vec<FieldSchema>,
pub prediction_fields: Vec<FieldSchema>,
pub ground_truth_fields: Vec<FieldSchema>,
}
Expand description
The Model Monitoring Schema definition.
Fields§
§feature_fields: Vec<FieldSchema>
Feature names of the model. Vertex AI will try to match the features from your dataset as follows:
- For ‘csv’ files, the header names are required, and we will extract the corresponding feature values when the header names align with the feature names.
- For ‘jsonl’ files, we will extract the corresponding feature values if the key names match the feature names. Note: Nested features are not supported, so please ensure your features are flattened. Ensure the feature values are scalar or an array of scalars.
- For ‘bigquery’ dataset, we will extract the corresponding feature values if the column names match the feature names. Note: The column type can be a scalar or an array of scalars. STRUCT or JSON types are not supported. You may use SQL queries to select or aggregate the relevant features from your original table. However, ensure that the ‘schema’ of the query results meets our requirements.
- For the Vertex AI Endpoint Request Response Logging table or Vertex AI Batch Prediction Job results. If the [instance_type][google.cloud.aiplatform.v1beta1.ModelMonitoringSchema.instance_type] is an array, ensure that the sequence in [feature_fields][google.cloud.aiplatform.v1beta1.ModelMonitoringSchema.feature_fields] matches the order of features in the prediction instance. We will match the feature with the array in the order specified in [feature_fields].
prediction_fields: Vec<FieldSchema>
Prediction output names of the model. The requirements are the same as the
[feature_fields][google.cloud.aiplatform.v1beta1.ModelMonitoringSchema.feature_fields].
For AutoML Tables, the prediction output name presented in schema will be:
predicted_{target_column}
, the target_column
is the one you specified
when you train the model.
For Prediction output drift analysis:
- AutoML Classification, the distribution of the argmax label will be analyzed.
- AutoML Regression, the distribution of the value will be analyzed.
ground_truth_fields: Vec<FieldSchema>
Target /ground truth names of the model.
Trait Implementations§
source§impl Clone for ModelMonitoringSchema
impl Clone for ModelMonitoringSchema
source§fn clone(&self) -> ModelMonitoringSchema
fn clone(&self) -> ModelMonitoringSchema
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl Debug for ModelMonitoringSchema
impl Debug for ModelMonitoringSchema
source§impl Default for ModelMonitoringSchema
impl Default for ModelMonitoringSchema
source§impl Message for ModelMonitoringSchema
impl Message for ModelMonitoringSchema
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
Returns the encoded length of the message without a length delimiter.
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
Encodes the message to a buffer. Read more
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
Encodes the message to a newly allocated buffer.
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
Encodes the message with a length-delimiter to a buffer. Read more
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
Encodes the message with a length-delimiter to a newly allocated buffer.
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
Decodes an instance of the message from a buffer. Read more
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
Decodes a length-delimited instance of the message from the buffer.
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
Decodes an instance of the message from a buffer, and merges it into
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
Decodes a length-delimited instance of the message from buffer, and
merges it into
self
.source§impl PartialEq for ModelMonitoringSchema
impl PartialEq for ModelMonitoringSchema
source§fn eq(&self, other: &ModelMonitoringSchema) -> bool
fn eq(&self, other: &ModelMonitoringSchema) -> bool
This method tests for
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for ModelMonitoringSchema
Auto Trait Implementations§
impl Freeze for ModelMonitoringSchema
impl RefUnwindSafe for ModelMonitoringSchema
impl Send for ModelMonitoringSchema
impl Sync for ModelMonitoringSchema
impl Unpin for ModelMonitoringSchema
impl UnwindSafe for ModelMonitoringSchema
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
Wrap the input message
T
in a tonic::Request