Struct google_api_proto::google::cloud::aiplatform::v1beta1::ModelEvaluation
source · pub struct ModelEvaluation {
pub name: String,
pub display_name: String,
pub metrics_schema_uri: String,
pub metrics: Option<Value>,
pub create_time: Option<Timestamp>,
pub slice_dimensions: Vec<String>,
pub model_explanation: Option<ModelExplanation>,
pub explanation_specs: Vec<ModelEvaluationExplanationSpec>,
pub metadata: Option<Value>,
pub bias_configs: Option<BiasConfig>,
}
Expand description
A collection of metrics calculated by comparing Model’s predictions on all of the test data against annotations from the test data.
Fields§
§name: String
Output only. The resource name of the ModelEvaluation.
display_name: String
The display name of the ModelEvaluation.
metrics_schema_uri: String
Points to a YAML file stored on Google Cloud Storage describing the [metrics][google.cloud.aiplatform.v1beta1.ModelEvaluation.metrics] of this ModelEvaluation. The schema is defined as an OpenAPI 3.0.2 Schema Object.
metrics: Option<Value>
Evaluation metrics of the Model. The schema of the metrics is stored in [metrics_schema_uri][google.cloud.aiplatform.v1beta1.ModelEvaluation.metrics_schema_uri]
create_time: Option<Timestamp>
Output only. Timestamp when this ModelEvaluation was created.
slice_dimensions: Vec<String>
All possible
[dimensions][google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.dimension]
of ModelEvaluationSlices. The dimensions can be used as the filter of the
[ModelService.ListModelEvaluationSlices][google.cloud.aiplatform.v1beta1.ModelService.ListModelEvaluationSlices]
request, in the form of slice.dimension = <dimension>
.
model_explanation: Option<ModelExplanation>
Aggregated explanation metrics for the Model’s prediction output over the data this ModelEvaluation uses. This field is populated only if the Model is evaluated with explanations, and only for AutoML tabular Models.
explanation_specs: Vec<ModelEvaluationExplanationSpec>
Describes the values of [ExplanationSpec][google.cloud.aiplatform.v1beta1.ExplanationSpec] that are used for explaining the predicted values on the evaluated data.
metadata: Option<Value>
The metadata of the ModelEvaluation. For the ModelEvaluation uploaded from Managed Pipeline, metadata contains a structured value with keys of “pipeline_job_id”, “evaluation_dataset_type”, “evaluation_dataset_path”, “row_based_metrics_path”.
bias_configs: Option<BiasConfig>
Specify the configuration for bias detection.
Trait Implementations§
source§impl Clone for ModelEvaluation
impl Clone for ModelEvaluation
source§fn clone(&self) -> ModelEvaluation
fn clone(&self) -> ModelEvaluation
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for ModelEvaluation
impl Debug for ModelEvaluation
source§impl Default for ModelEvaluation
impl Default for ModelEvaluation
source§impl Message for ModelEvaluation
impl Message for ModelEvaluation
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
.source§impl PartialEq for ModelEvaluation
impl PartialEq for ModelEvaluation
source§fn eq(&self, other: &ModelEvaluation) -> bool
fn eq(&self, other: &ModelEvaluation) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for ModelEvaluation
Auto Trait Implementations§
impl Freeze for ModelEvaluation
impl RefUnwindSafe for ModelEvaluation
impl Send for ModelEvaluation
impl Sync for ModelEvaluation
impl Unpin for ModelEvaluation
impl UnwindSafe for ModelEvaluation
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request