Struct google_api_proto::google::cloud::aiplatform::v1beta1::DataLabelingJob
source · pub struct DataLabelingJob {Show 18 fields
pub name: String,
pub display_name: String,
pub datasets: Vec<String>,
pub annotation_labels: BTreeMap<String, String>,
pub labeler_count: i32,
pub instruction_uri: String,
pub inputs_schema_uri: String,
pub inputs: Option<Value>,
pub state: i32,
pub labeling_progress: i32,
pub current_spend: Option<Money>,
pub create_time: Option<Timestamp>,
pub update_time: Option<Timestamp>,
pub error: Option<Status>,
pub labels: BTreeMap<String, String>,
pub specialist_pools: Vec<String>,
pub encryption_spec: Option<EncryptionSpec>,
pub active_learning_config: Option<ActiveLearningConfig>,
}
Expand description
DataLabelingJob is used to trigger a human labeling job on unlabeled data from the following Dataset:
Fields§
§name: String
Output only. Resource name of the DataLabelingJob.
display_name: String
Required. The user-defined name of the DataLabelingJob. The name can be up to 128 characters long and can consist of any UTF-8 characters. Display name of a DataLabelingJob.
datasets: Vec<String>
Required. Dataset resource names. Right now we only support labeling from a
single Dataset. Format:
projects/{project}/locations/{location}/datasets/{dataset}
annotation_labels: BTreeMap<String, String>
Labels to assign to annotations generated by this DataLabelingJob.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
labeler_count: i32
Required. Number of labelers to work on each DataItem.
instruction_uri: String
Required. The Google Cloud Storage location of the instruction pdf. This pdf is shared with labelers, and provides detailed description on how to label DataItems in Datasets.
inputs_schema_uri: String
Required. Points to a YAML file stored on Google Cloud Storage describing the config for a specific type of DataLabelingJob. The schema files that can be used here are found in the https://storage.googleapis.com/google-cloud-aiplatform bucket in the /schema/datalabelingjob/inputs/ folder.
inputs: Option<Value>
Required. Input config parameters for the DataLabelingJob.
state: i32
Output only. The detailed state of the job.
labeling_progress: i32
Output only. Current labeling job progress percentage scaled in interval [0, 100], indicating the percentage of DataItems that has been finished.
current_spend: Option<Money>
Output only. Estimated cost(in US dollars) that the DataLabelingJob has incurred to date.
create_time: Option<Timestamp>
Output only. Timestamp when this DataLabelingJob was created.
update_time: Option<Timestamp>
Output only. Timestamp when this DataLabelingJob was updated most recently.
error: Option<Status>
Output only. DataLabelingJob errors. It is only populated when job’s state
is JOB_STATE_FAILED
or JOB_STATE_CANCELLED
.
labels: BTreeMap<String, String>
The labels with user-defined metadata to organize your DataLabelingJobs.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable. Following system labels exist for each DataLabelingJob:
- “aiplatform.googleapis.com/schema”: output only, its value is the [inputs_schema][google.cloud.aiplatform.v1beta1.DataLabelingJob.inputs_schema_uri]’s title.
specialist_pools: Vec<String>
The SpecialistPools’ resource names associated with this job.
encryption_spec: Option<EncryptionSpec>
Customer-managed encryption key spec for a DataLabelingJob. If set, this DataLabelingJob will be secured by this key.
Note: Annotations created in the DataLabelingJob are associated with the EncryptionSpec of the Dataset they are exported to.
active_learning_config: Option<ActiveLearningConfig>
Parameters that configure the active learning pipeline. Active learning will label the data incrementally via several iterations. For every iteration, it will select a batch of data based on the sampling strategy.
Implementations§
Trait Implementations§
source§impl Clone for DataLabelingJob
impl Clone for DataLabelingJob
source§fn clone(&self) -> DataLabelingJob
fn clone(&self) -> DataLabelingJob
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for DataLabelingJob
impl Debug for DataLabelingJob
source§impl Default for DataLabelingJob
impl Default for DataLabelingJob
source§impl Message for DataLabelingJob
impl Message for DataLabelingJob
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
.source§impl PartialEq for DataLabelingJob
impl PartialEq for DataLabelingJob
source§fn eq(&self, other: &DataLabelingJob) -> bool
fn eq(&self, other: &DataLabelingJob) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for DataLabelingJob
Auto Trait Implementations§
impl Freeze for DataLabelingJob
impl RefUnwindSafe for DataLabelingJob
impl Send for DataLabelingJob
impl Sync for DataLabelingJob
impl Unpin for DataLabelingJob
impl UnwindSafe for DataLabelingJob
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request