Struct google_api_proto::google::cloud::aiplatform::v1beta1::ModelMonitor
source · pub struct ModelMonitor {Show 13 fields
pub name: String,
pub display_name: String,
pub model_monitoring_target: Option<ModelMonitoringTarget>,
pub training_dataset: Option<ModelMonitoringInput>,
pub notification_spec: Option<ModelMonitoringNotificationSpec>,
pub output_spec: Option<ModelMonitoringOutputSpec>,
pub explanation_spec: Option<ExplanationSpec>,
pub model_monitoring_schema: Option<ModelMonitoringSchema>,
pub create_time: Option<Timestamp>,
pub update_time: Option<Timestamp>,
pub satisfies_pzs: bool,
pub satisfies_pzi: bool,
pub default_objective: Option<DefaultObjective>,
}
Expand description
Vertex AI Model Monitoring Service serves as a central hub for the analysis and visualization of data quality and performance related to models. ModelMonitor stands as a top level resource for overseeing your model monitoring tasks.
Fields§
§name: String
Immutable. Resource name of the ModelMonitor. Format:
projects/{project}/locations/{location}/modelMonitors/{model_monitor}
.
display_name: String
The display name of the ModelMonitor. The name can be up to 128 characters long and can consist of any UTF-8.
model_monitoring_target: Option<ModelMonitoringTarget>
The entity that is subject to analysis. Currently only models in Vertex AI Model Registry are supported. If you want to analyze the model which is outside the Vertex AI, you could register a model in Vertex AI Model Registry using just a display name.
training_dataset: Option<ModelMonitoringInput>
Optional training dataset used to train the model. It can serve as a reference dataset to identify changes in production.
notification_spec: Option<ModelMonitoringNotificationSpec>
Optional default notification spec, it can be overridden in the ModelMonitoringJob notification spec.
output_spec: Option<ModelMonitoringOutputSpec>
Optional default monitoring metrics/logs export spec, it can be overridden in the ModelMonitoringJob output spec. If not specified, a default Google Cloud Storage bucket will be created under your project.
explanation_spec: Option<ExplanationSpec>
Optional model explanation spec. It is used for feature attribution monitoring.
model_monitoring_schema: Option<ModelMonitoringSchema>
Monitoring Schema is to specify the model’s features, prediction outputs and ground truth properties. It is used to extract pertinent data from the dataset and to process features based on their properties. Make sure that the schema aligns with your dataset, if it does not, we will be unable to extract data from the dataset. It is required for most models, but optional for Vertex AI AutoML Tables unless the schem information is not available.
create_time: Option<Timestamp>
Output only. Timestamp when this ModelMonitor was created.
update_time: Option<Timestamp>
Output only. Timestamp when this ModelMonitor was updated most recently.
satisfies_pzs: bool
Output only. Reserved for future use.
satisfies_pzi: bool
Output only. Reserved for future use.
default_objective: Option<DefaultObjective>
Optional default monitoring objective, it can be overridden in the ModelMonitoringJob objective spec.
Trait Implementations§
source§impl Clone for ModelMonitor
impl Clone for ModelMonitor
source§fn clone(&self) -> ModelMonitor
fn clone(&self) -> ModelMonitor
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for ModelMonitor
impl Debug for ModelMonitor
source§impl Default for ModelMonitor
impl Default for ModelMonitor
source§impl Message for ModelMonitor
impl Message for ModelMonitor
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
.source§impl PartialEq for ModelMonitor
impl PartialEq for ModelMonitor
source§fn eq(&self, other: &ModelMonitor) -> bool
fn eq(&self, other: &ModelMonitor) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for ModelMonitor
Auto Trait Implementations§
impl Freeze for ModelMonitor
impl RefUnwindSafe for ModelMonitor
impl Send for ModelMonitor
impl Sync for ModelMonitor
impl Unpin for ModelMonitor
impl UnwindSafe for ModelMonitor
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request