Struct google_api_proto::google::cloud::automl::v1::ClassificationEvaluationMetrics
source · pub struct ClassificationEvaluationMetrics {
pub au_prc: f32,
pub au_roc: f32,
pub log_loss: f32,
pub confidence_metrics_entry: Vec<ConfidenceMetricsEntry>,
pub confusion_matrix: Option<ConfusionMatrix>,
pub annotation_spec_id: Vec<String>,
}
Expand description
Model evaluation metrics for classification problems. Note: For Video Classification this metrics only describe quality of the Video Classification predictions of “segment_classification” type.
Fields§
§au_prc: f32
Output only. The Area Under Precision-Recall Curve metric. Micro-averaged for the overall evaluation.
au_roc: f32
Output only. The Area Under Receiver Operating Characteristic curve metric. Micro-averaged for the overall evaluation.
log_loss: f32
Output only. The Log Loss metric.
confidence_metrics_entry: Vec<ConfidenceMetricsEntry>
Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,…,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.
confusion_matrix: Option<ConfusionMatrix>
Output only. Confusion matrix of the evaluation. Only set for MULTICLASS classification problems where number of labels is no more than 10. Only set for model level evaluation, not for evaluation per label.
annotation_spec_id: Vec<String>
Output only. The annotation spec ids used for this evaluation.
Trait Implementations§
source§impl Clone for ClassificationEvaluationMetrics
impl Clone for ClassificationEvaluationMetrics
source§fn clone(&self) -> ClassificationEvaluationMetrics
fn clone(&self) -> ClassificationEvaluationMetrics
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Message for ClassificationEvaluationMetrics
impl Message for ClassificationEvaluationMetrics
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
.source§impl PartialEq for ClassificationEvaluationMetrics
impl PartialEq for ClassificationEvaluationMetrics
source§fn eq(&self, other: &ClassificationEvaluationMetrics) -> bool
fn eq(&self, other: &ClassificationEvaluationMetrics) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for ClassificationEvaluationMetrics
Auto Trait Implementations§
impl Freeze for ClassificationEvaluationMetrics
impl RefUnwindSafe for ClassificationEvaluationMetrics
impl Send for ClassificationEvaluationMetrics
impl Sync for ClassificationEvaluationMetrics
impl Unpin for ClassificationEvaluationMetrics
impl UnwindSafe for ClassificationEvaluationMetrics
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request