Struct google_api_proto::google::cloud::automl::v1::classification_evaluation_metrics::ConfidenceMetricsEntry
source · pub struct ConfidenceMetricsEntry {Show 14 fields
pub confidence_threshold: f32,
pub position_threshold: i32,
pub recall: f32,
pub precision: f32,
pub false_positive_rate: f32,
pub f1_score: f32,
pub recall_at1: f32,
pub precision_at1: f32,
pub false_positive_rate_at1: f32,
pub f1_score_at1: f32,
pub true_positive_count: i64,
pub false_positive_count: i64,
pub false_negative_count: i64,
pub true_negative_count: i64,
}
Expand description
Metrics for a single confidence threshold.
Fields§
§confidence_threshold: f32
Output only. Metrics are computed with an assumption that the model never returns predictions with score lower than this value.
position_threshold: i32
Output only. Metrics are computed with an assumption that the model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the confidence_threshold.
recall: f32
Output only. Recall (True Positive Rate) for the given confidence threshold.
precision: f32
Output only. Precision for the given confidence threshold.
false_positive_rate: f32
Output only. False Positive Rate for the given confidence threshold.
f1_score: f32
Output only. The harmonic mean of recall and precision.
recall_at1: f32
Output only. The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
precision_at1: f32
Output only. The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
false_positive_rate_at1: f32
Output only. The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
f1_score_at1: f32
Output only. The harmonic mean of [recall_at1][google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1].
true_positive_count: i64
Output only. The number of model created labels that match a ground truth label.
false_positive_count: i64
Output only. The number of model created labels that do not match a ground truth label.
false_negative_count: i64
Output only. The number of ground truth labels that are not matched by a model created label.
true_negative_count: i64
Output only. The number of labels that were not created by the model, but if they would, they would not match a ground truth label.
Trait Implementations§
source§impl Clone for ConfidenceMetricsEntry
impl Clone for ConfidenceMetricsEntry
source§fn clone(&self) -> ConfidenceMetricsEntry
fn clone(&self) -> ConfidenceMetricsEntry
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for ConfidenceMetricsEntry
impl Debug for ConfidenceMetricsEntry
source§impl Default for ConfidenceMetricsEntry
impl Default for ConfidenceMetricsEntry
source§impl Message for ConfidenceMetricsEntry
impl Message for ConfidenceMetricsEntry
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
.source§impl PartialEq for ConfidenceMetricsEntry
impl PartialEq for ConfidenceMetricsEntry
source§fn eq(&self, other: &ConfidenceMetricsEntry) -> bool
fn eq(&self, other: &ConfidenceMetricsEntry) -> bool
self
and other
values to be equal, and is used
by ==
.impl Copy for ConfidenceMetricsEntry
impl StructuralPartialEq for ConfidenceMetricsEntry
Auto Trait Implementations§
impl Freeze for ConfidenceMetricsEntry
impl RefUnwindSafe for ConfidenceMetricsEntry
impl Send for ConfidenceMetricsEntry
impl Sync for ConfidenceMetricsEntry
impl Unpin for ConfidenceMetricsEntry
impl UnwindSafe for ConfidenceMetricsEntry
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request