Module google_api_proto::google::cloud::automl::v1

source ·

Modules§

Structs§

  • Contains annotation information that is relevant to AutoML.
  • A definition of an annotation spec.
  • Input configuration for BatchPredict Action.
  • Details of BatchPredict operation.
  • Output configuration for BatchPredict Action.
  • Request message for [PredictionService.BatchPredict][google.cloud.automl.v1.PredictionService.BatchPredict].
  • Result of the Batch Predict. This message is returned in [response][google.longrunning.Operation.response] of the operation returned by the [PredictionService.BatchPredict][google.cloud.automl.v1.PredictionService.BatchPredict].
  • Bounding box matching model metrics for a single intersection-over-union threshold and multiple label match confidence thresholds.
  • A bounding polygon of a detected object on a plane. On output both vertices and normalized_vertices are provided. The polygon is formed by connecting vertices in the order they are listed.
  • Contains annotation details specific to classification.
  • Model evaluation metrics for classification problems. Note: For Video Classification this metrics only describe quality of the Video Classification predictions of “segment_classification” type.
  • Details of CreateDataset operation.
  • Request message for [AutoMl.CreateDataset][google.cloud.automl.v1.AutoMl.CreateDataset].
  • Details of CreateModel operation.
  • Request message for [AutoMl.CreateModel][google.cloud.automl.v1.AutoMl.CreateModel].
  • A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
  • Request message for [AutoMl.DeleteDataset][google.cloud.automl.v1.AutoMl.DeleteDataset].
  • Request message for [AutoMl.DeleteModel][google.cloud.automl.v1.AutoMl.DeleteModel].
  • Details of operations that perform deletes of any entities.
  • Details of DeployModel operation.
  • Request message for [AutoMl.DeployModel][google.cloud.automl.v1.AutoMl.DeployModel].
  • A structured text document e.g. a PDF.
  • Message that describes dimension of a document.
  • Input configuration of a [Document][google.cloud.automl.v1.Document].
  • Example data used for training or prediction.
  • Details of ExportData operation.
  • Request message for [AutoMl.ExportData][google.cloud.automl.v1.AutoMl.ExportData].
  • Details of ExportModel operation.
  • Request message for [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]. Models need to be enabled for exporting, otherwise an error code will be returned.
  • The Google Cloud Storage location where the output is to be written to.
  • The Google Cloud Storage location for the input content.
  • Request message for [AutoMl.GetAnnotationSpec][google.cloud.automl.v1.AutoMl.GetAnnotationSpec].
  • Request message for [AutoMl.GetDataset][google.cloud.automl.v1.AutoMl.GetDataset].
  • Request message for [AutoMl.GetModelEvaluation][google.cloud.automl.v1.AutoMl.GetModelEvaluation].
  • Request message for [AutoMl.GetModel][google.cloud.automl.v1.AutoMl.GetModel].
  • A representation of an image. Only images up to 30MB in size are supported.
  • Dataset metadata that is specific to image classification.
  • Model deployment metadata specific to Image Classification.
  • Model metadata for image classification.
  • Annotation details for image object detection.
  • Dataset metadata specific to image object detection.
  • Model evaluation metrics for image object detection problems. Evaluates prediction quality of labeled bounding boxes.
  • Model deployment metadata specific to Image Object Detection.
  • Model metadata specific to image object detection.
  • Details of ImportData operation.
  • Request message for [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData].
  • Input configuration for [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData] action.
  • Request message for [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets].
  • Response message for [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets].
  • Request message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations].
  • Response message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations].
  • Request message for [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels].
  • Response message for [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels].
  • API proto representing a trained machine learning model.
  • Evaluation results of a model.
  • Output configuration for ModelExport Action.
  • A vertex represents a 2D point in the image. The normalized vertex coordinates are between 0 to 1 fractions relative to the original plane (image, video). E.g. if the plane (e.g. whole image) would have size 10 x 20 then a point with normalized coordinates (0.1, 0.3) would be at the position (1, 6) on that plane.
  • Metadata used across all long running operations returned by AutoML API.
  • For Translation: CSV file translation.csv, with each line in format: ML_USE,GCS_FILE_PATH GCS_FILE_PATH leads to a .TSV file which describes examples that have given ML_USE, using the following row format per line: TEXT_SNIPPET (in source language) \t TEXT_SNIPPET (in target language)For Tables: Output depends on whether the dataset was imported from Google Cloud Storage or BigQuery. Google Cloud Storage case: [gcs_destination][google.cloud.automl.v1p1beta.OutputConfig.gcs_destination] must be set. Exported are CSV file(s) tables_1.csv, tables_2.csv,…,tables_N.csv with each having as header line the table’s column names, and all other lines contain values for the header columns. BigQuery case: [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination] pointing to a BigQuery project must be set. In the given project a new dataset will be created with name export_data_<automl-dataset-display-name>_<timestamp-of-export-call> where will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ “based on ISO-8601” format. In that dataset a new table called primary_table will be created, and filled with precisely the same data as this obtained on import.
  • Request message for [PredictionService.Predict][google.cloud.automl.v1.PredictionService.Predict].
  • Response message for [PredictionService.Predict][google.cloud.automl.v1.PredictionService.Predict].
  • Dataset metadata for classification.
  • Model metadata that is specific to text classification.
  • Annotation for identifying spans of text.
  • Dataset metadata that is specific to text extraction
  • Model evaluation metrics for text extraction problems.
  • Model metadata that is specific to text extraction.
  • A contiguous part of a text (string), assuming it has an UTF-8 NFC encoding.
  • Contains annotation details specific to text sentiment.
  • Dataset metadata for text sentiment.
  • Model evaluation metrics for text sentiment problems.
  • Model metadata that is specific to text sentiment.
  • A representation of a text snippet.
  • Annotation details specific to translation.
  • Dataset metadata that is specific to translation.
  • Evaluation metrics for the dataset.
  • Model metadata that is specific to translation.
  • Details of UndeployModel operation.
  • Request message for [AutoMl.UndeployModel][google.cloud.automl.v1.AutoMl.UndeployModel].
  • Request message for [AutoMl.UpdateDataset][google.cloud.automl.v1.AutoMl.UpdateDataset]
  • Request message for [AutoMl.UpdateModel][google.cloud.automl.v1.AutoMl.UpdateModel]

Enums§