Nested message and enum types in AnnotationPayload
.
Generated client implementations.
Nested message and enum types in BatchPredictInputConfig
.
Nested message and enum types in BatchPredictOperationMetadata
.
Nested message and enum types in BatchPredictOutputConfig
.
Nested message and enum types in BoundingBoxMetricsEntry
.
Nested message and enum types in ClassificationEvaluationMetrics
.
Nested message and enum types in Dataset
.
Nested message and enum types in DeployModelRequest
.
Nested message and enum types in Document
.
Nested message and enum types in DocumentDimensions
.
Nested message and enum types in ExamplePayload
.
Nested message and enum types in ExportDataOperationMetadata
.
Nested message and enum types in ExportModelOperationMetadata
.
Nested message and enum types in Image
.
Nested message and enum types in InputConfig
.
Nested message and enum types in Model
.
Nested message and enum types in ModelEvaluation
.
Nested message and enum types in ModelExportOutputConfig
.
Nested message and enum types in OperationMetadata
.
Nested message and enum types in OutputConfig
.
Generated client implementations.
Nested message and enum types in TextExtractionAnnotation
.
Nested message and enum types in TextExtractionEvaluationMetrics
.
Contains annotation information that is relevant to AutoML.
A definition of an annotation spec.
Input configuration for BatchPredict Action.
Details of BatchPredict operation.
Output configuration for BatchPredict Action.
Request message for [PredictionService.BatchPredict][google.cloud.automl.v1.PredictionService.BatchPredict].
Result of the Batch Predict. This message is returned in
[response][google.longrunning.Operation.response] of the operation returned
by the [PredictionService.BatchPredict][google.cloud.automl.v1.PredictionService.BatchPredict].
Bounding box matching model metrics for a single intersection-over-union
threshold and multiple label match confidence thresholds.
A bounding polygon of a detected object on a plane.
On output both vertices and normalized_vertices are provided.
The polygon is formed by connecting vertices in the order they are listed.
Contains annotation details specific to classification.
Model evaluation metrics for classification problems.
Note: For Video Classification this metrics only describe quality of the
Video Classification predictions of “segment_classification” type.
Details of CreateDataset operation.
Request message for [AutoMl.CreateDataset][google.cloud.automl.v1.AutoMl.CreateDataset].
Details of CreateModel operation.
Request message for [AutoMl.CreateModel][google.cloud.automl.v1.AutoMl.CreateModel].
A workspace for solving a single, particular machine learning (ML) problem.
A workspace contains examples that may be annotated.
Request message for [AutoMl.DeleteDataset][google.cloud.automl.v1.AutoMl.DeleteDataset].
Request message for [AutoMl.DeleteModel][google.cloud.automl.v1.AutoMl.DeleteModel].
Details of operations that perform deletes of any entities.
Details of DeployModel operation.
Request message for [AutoMl.DeployModel][google.cloud.automl.v1.AutoMl.DeployModel].
A structured text document e.g. a PDF.
Message that describes dimension of a document.
Input configuration of a [Document][google.cloud.automl.v1.Document].
Example data used for training or prediction.
Details of ExportData operation.
Request message for [AutoMl.ExportData][google.cloud.automl.v1.AutoMl.ExportData].
Details of ExportModel operation.
Request message for [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel].
Models need to be enabled for exporting, otherwise an error code will be
returned.
The Google Cloud Storage location where the output is to be written to.
The Google Cloud Storage location for the input content.
Request message for [AutoMl.GetAnnotationSpec][google.cloud.automl.v1.AutoMl.GetAnnotationSpec].
Request message for [AutoMl.GetDataset][google.cloud.automl.v1.AutoMl.GetDataset].
Request message for [AutoMl.GetModelEvaluation][google.cloud.automl.v1.AutoMl.GetModelEvaluation].
Request message for [AutoMl.GetModel][google.cloud.automl.v1.AutoMl.GetModel].
A representation of an image.
Only images up to 30MB in size are supported.
Dataset metadata that is specific to image classification.
Model deployment metadata specific to Image Classification.
Model metadata for image classification.
Annotation details for image object detection.
Dataset metadata specific to image object detection.
Model evaluation metrics for image object detection problems.
Evaluates prediction quality of labeled bounding boxes.
Model deployment metadata specific to Image Object Detection.
Model metadata specific to image object detection.
Details of ImportData operation.
Request message for [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData].
Input configuration for [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData] action.
Request message for [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets].
Response message for [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets].
Request message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations].
Response message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations].
Request message for [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels].
Response message for [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels].
API proto representing a trained machine learning model.
Evaluation results of a model.
Output configuration for ModelExport Action.
A vertex represents a 2D point in the image.
The normalized vertex coordinates are between 0 to 1 fractions relative to
the original plane (image, video). E.g. if the plane (e.g. whole image) would
have size 10 x 20 then a point with normalized coordinates (0.1, 0.3) would
be at the position (1, 6) on that plane.
Metadata used across all long running operations returned by AutoML API.
For Translation:
CSV file
translation.csv
, with each line in format:
ML_USE,GCS_FILE_PATH
GCS_FILE_PATH leads to a .TSV file which describes examples that have
given ML_USE, using the following row format per line:
TEXT_SNIPPET (in source language) \t TEXT_SNIPPET (in target
language)For Tables:
Output depends on whether the dataset was imported from Google Cloud
Storage or BigQuery.
Google Cloud Storage case:
[gcs_destination][google.cloud.automl.v1p1beta.OutputConfig.gcs_destination]
must be set. Exported are CSV file(s)
tables_1.csv
,
tables_2.csv
,…,
tables_N.csv
with each having as header line
the table’s column names, and all other lines contain values for
the header columns.
BigQuery case:
[bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
pointing to a BigQuery project must be set. In the given project a
new dataset will be created with name
export_data_<automl-dataset-display-name>_<timestamp-of-export-call>
where
will be made
BigQuery-dataset-name compatible (e.g. most special characters will
become underscores), and timestamp will be in
YYYY_MM_DDThh_mm_ss_sssZ “based on ISO-8601” format. In that
dataset a new table called primary_table
will be created, and
filled with precisely the same data as this obtained on import.Request message for [PredictionService.Predict][google.cloud.automl.v1.PredictionService.Predict].
Response message for [PredictionService.Predict][google.cloud.automl.v1.PredictionService.Predict].
Dataset metadata for classification.
Model metadata that is specific to text classification.
Annotation for identifying spans of text.
Dataset metadata that is specific to text extraction
Model evaluation metrics for text extraction problems.
Model metadata that is specific to text extraction.
A contiguous part of a text (string), assuming it has an UTF-8 NFC encoding.
Contains annotation details specific to text sentiment.
Dataset metadata for text sentiment.
Model evaluation metrics for text sentiment problems.
Model metadata that is specific to text sentiment.
A representation of a text snippet.
Annotation details specific to translation.
Dataset metadata that is specific to translation.
Evaluation metrics for the dataset.
Model metadata that is specific to translation.
Details of UndeployModel operation.
Request message for [AutoMl.UndeployModel][google.cloud.automl.v1.AutoMl.UndeployModel].
Request message for [AutoMl.UpdateDataset][google.cloud.automl.v1.AutoMl.UpdateDataset]
Request message for [AutoMl.UpdateModel][google.cloud.automl.v1.AutoMl.UpdateModel]