Struct google_api_proto::google::cloud::automl::v1::BatchPredictInputConfig
source · pub struct BatchPredictInputConfig {
pub source: Option<Source>,
}
Expand description
Input configuration for BatchPredict Action.
The format of input depends on the ML problem of the model used for prediction. As input source the [gcs_source][google.cloud.automl.v1.InputConfig.gcs_source] is expected, unless specified otherwise.
The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:
AutoML Vision
Classification
One or more CSV files where each line is a single column:
GCS_FILE_PATH
The Google Cloud Storage location of an image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the batch predict output.
Sample rows:
gs://folder/image1.jpeg
gs://folder/image2.gif
gs://folder/image3.png
Object Detection
One or more CSV files where each line is a single column:
GCS_FILE_PATH
The Google Cloud Storage location of an image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the batch predict output.
Sample rows:
gs://folder/image1.jpeg
gs://folder/image2.gif
gs://folder/image3.png
AutoML Video Intelligence
Classification
One or more CSV files where each line is a single column:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END
GCS_FILE_PATH
is the Google Cloud Storage location of video up to 50GB in
size and up to 3h in duration duration.
Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
TIME_SEGMENT_START
and TIME_SEGMENT_END
must be within the
length of the video, and the end time must be after the start time.
Sample rows:
gs://folder/video1.mp4,10,40
gs://folder/video1.mp4,20,60
gs://folder/vid2.mov,0,inf
Object Tracking
One or more CSV files where each line is a single column:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END
GCS_FILE_PATH
is the Google Cloud Storage location of video up to 50GB in
size and up to 3h in duration duration.
Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
TIME_SEGMENT_START
and TIME_SEGMENT_END
must be within the
length of the video, and the end time must be after the start time.
Sample rows:
gs://folder/video1.mp4,10,40
gs://folder/video1.mp4,20,60
gs://folder/vid2.mov,0,inf
AutoML Natural Language
Classification
One or more CSV files where each line is a single column:
GCS_FILE_PATH
GCS_FILE_PATH
is the Google Cloud Storage location of a text file.
Supported file extensions: .TXT, .PDF, .TIF, .TIFF
Text files can be no larger than 10MB in size.
Sample rows:
gs://folder/text1.txt
gs://folder/text2.pdf
gs://folder/text3.tif
Sentiment Analysis
One or more CSV files where each line is a single column: GCS_FILE_PATH
GCS_FILE_PATH
is the Google Cloud Storage location of a text file.
Supported file extensions: .TXT, .PDF, .TIF, .TIFF
Text files can be no larger than 128kB in size.
Sample rows:
gs://folder/text1.txt
gs://folder/text2.pdf
gs://folder/text3.tif
Entity Extraction
One or more JSONL (JSON Lines) files that either provide inline text or documents. You can only use one format, either inline text or documents, for a single call to [AutoMl.BatchPredict].
Each JSONL file contains a per line a proto that wraps a temporary user-assigned TextSnippet ID (string up to 2000 characters long) called “id”, a TextSnippet proto (in JSON representation) and zero or more TextFeature protos. Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded (ASCII already is). The IDs provided should be unique.
Each document JSONL file contains, per line, a proto that wraps a Document
proto with input_config
set. Each document cannot exceed 2MB in size.
Supported document extensions: .PDF, .TIF, .TIFF
Each JSONL file must not exceed 100MB in size, and no more than 20 JSONL files may be passed.
Sample inline JSONL file (Shown with artificial line breaks. Actual line breaks are denoted by “\n”.):
{
"id": "my_first_id",
"text_snippet": { "content": "dog car cat"},
"text_features": [
{
"text_segment": {"start_offset": 4, "end_offset": 6},
"structural_type": PARAGRAPH,
"bounding_poly": {
"normalized_vertices": [
{"x": 0.1, "y": 0.1},
{"x": 0.1, "y": 0.3},
{"x": 0.3, "y": 0.3},
{"x": 0.3, "y": 0.1},
]
},
}
],
}\n
{
"id": "2",
"text_snippet": {
"content": "Extended sample content",
"mime_type": "text/plain"
}
}
Sample document JSONL file (Shown with artificial line breaks. Actual line breaks are denoted by “\n”.):
{
"document": {
"input_config": {
"gcs_source": { "input_uris": \[ "gs://folder/document1.pdf" \]
}
}
}
}\n
{
"document": {
"input_config": {
"gcs_source": { "input_uris": \[ "gs://folder/document2.tif" \]
}
}
}
}
AutoML Tables
See Preparing your training data for more information.
You can use either [gcs_source][google.cloud.automl.v1.BatchPredictInputConfig.gcs_source] or [bigquery_source][BatchPredictInputConfig.bigquery_source].
For gcs_source:
CSV file(s), each by itself 10GB or smaller and total size must be 100GB or smaller, where first file must have a header containing column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns.
The column names must contain the model’s [input_feature_column_specs’][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs] [display_name-s][google.cloud.automl.v1.ColumnSpec.display_name] (order doesn’t matter). The columns corresponding to the model’s input feature column specs must contain values compatible with the column spec’s data types. Prediction on all the rows, i.e. the CSV lines, will be attempted.
Sample rows from a CSV file:
"First Name","Last Name","Dob","Addresses" "John","Doe","1968-01-22","\[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}\]" "Jane","Doe","1980-10-16","\[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}\]}
For bigquery_source:
The URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller.
The column names must contain the model’s [input_feature_column_specs’][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs] [display_name-s][google.cloud.automl.v1.ColumnSpec.display_name] (order doesn’t matter). The columns corresponding to the model’s input feature column specs must contain values compatible with the column spec’s data types. Prediction on all the rows of the table will be attempted.
Input field definitions:
GCS_FILE_PATH
: The path to a file on Google Cloud Storage. For example,
“gs://folder/video.avi”.
TIME_SEGMENT_START
: (TIME_OFFSET
)
Expresses a beginning, inclusive, of a time segment
within an example that has a time dimension
(e.g. video).
TIME_SEGMENT_END
: (TIME_OFFSET
)
Expresses an end, exclusive, of a time segment within
n example that has a time dimension (e.g. video).
TIME_OFFSET
: A number of seconds as measured from the start of an
example (e.g. video). Fractions are allowed, up to a
microsecond precision. “inf” is allowed, and it means the end
of the example.
Errors:
If any of the provided CSV files can’t be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and prediction does not happen. Regardless of overall success or failure the per-row failures, up to a certain count cap, will be listed in Operation.metadata.partial_failures.
Fields§
§source: Option<Source>
The source of the input.
Trait Implementations§
source§impl Clone for BatchPredictInputConfig
impl Clone for BatchPredictInputConfig
source§fn clone(&self) -> BatchPredictInputConfig
fn clone(&self) -> BatchPredictInputConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for BatchPredictInputConfig
impl Debug for BatchPredictInputConfig
source§impl Default for BatchPredictInputConfig
impl Default for BatchPredictInputConfig
source§impl Message for BatchPredictInputConfig
impl Message for BatchPredictInputConfig
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
.source§impl PartialEq for BatchPredictInputConfig
impl PartialEq for BatchPredictInputConfig
source§fn eq(&self, other: &BatchPredictInputConfig) -> bool
fn eq(&self, other: &BatchPredictInputConfig) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for BatchPredictInputConfig
Auto Trait Implementations§
impl Freeze for BatchPredictInputConfig
impl RefUnwindSafe for BatchPredictInputConfig
impl Send for BatchPredictInputConfig
impl Sync for BatchPredictInputConfig
impl Unpin for BatchPredictInputConfig
impl UnwindSafe for BatchPredictInputConfig
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request