1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
// This file is @generated by prost-build.
/// A vertex represents a 2D point in the image.
/// The normalized vertex coordinates are between 0 to 1 fractions relative to
/// the original plane (image, video). E.g. if the plane (e.g. whole image) would
/// have size 10 x 20 then a point with normalized coordinates (0.1, 0.3) would
/// be at the position (1, 6) on that plane.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct NormalizedVertex {
    /// Required. Horizontal coordinate.
    #[prost(float, tag = "1")]
    pub x: f32,
    /// Required. Vertical coordinate.
    #[prost(float, tag = "2")]
    pub y: f32,
}
/// A bounding polygon of a detected object on a plane.
/// On output both vertices and normalized_vertices are provided.
/// The polygon is formed by connecting vertices in the order they are listed.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BoundingPoly {
    /// Output only . The bounding polygon normalized vertices.
    #[prost(message, repeated, tag = "2")]
    pub normalized_vertices: ::prost::alloc::vec::Vec<NormalizedVertex>,
}
/// Annotation details for image object detection.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ImageObjectDetectionAnnotation {
    /// Output only. The rectangle representing the object location.
    #[prost(message, optional, tag = "1")]
    pub bounding_box: ::core::option::Option<BoundingPoly>,
    /// Output only. The confidence that this annotation is positive for the parent example,
    /// value in \[0, 1\], higher means higher positivity confidence.
    #[prost(float, tag = "2")]
    pub score: f32,
}
/// Bounding box matching model metrics for a single intersection-over-union
/// threshold and multiple label match confidence thresholds.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BoundingBoxMetricsEntry {
    /// Output only. The intersection-over-union threshold value used to compute
    /// this metrics entry.
    #[prost(float, tag = "1")]
    pub iou_threshold: f32,
    /// Output only. The mean average precision, most often close to au_prc.
    #[prost(float, tag = "2")]
    pub mean_average_precision: f32,
    /// Output only. Metrics for each label-match confidence_threshold from
    /// 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99. Precision-recall curve is
    /// derived from them.
    #[prost(message, repeated, tag = "3")]
    pub confidence_metrics_entries: ::prost::alloc::vec::Vec<
        bounding_box_metrics_entry::ConfidenceMetricsEntry,
    >,
}
/// Nested message and enum types in `BoundingBoxMetricsEntry`.
pub mod bounding_box_metrics_entry {
    /// Metrics for a single confidence threshold.
    #[derive(Clone, Copy, PartialEq, ::prost::Message)]
    pub struct ConfidenceMetricsEntry {
        /// Output only. The confidence threshold value used to compute the metrics.
        #[prost(float, tag = "1")]
        pub confidence_threshold: f32,
        /// Output only. Recall under the given confidence threshold.
        #[prost(float, tag = "2")]
        pub recall: f32,
        /// Output only. Precision under the given confidence threshold.
        #[prost(float, tag = "3")]
        pub precision: f32,
        /// Output only. The harmonic mean of recall and precision.
        #[prost(float, tag = "4")]
        pub f1_score: f32,
    }
}
/// Model evaluation metrics for image object detection problems.
/// Evaluates prediction quality of labeled bounding boxes.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ImageObjectDetectionEvaluationMetrics {
    /// Output only. The total number of bounding boxes (i.e. summed over all
    /// images) the ground truth used to create this evaluation had.
    #[prost(int32, tag = "1")]
    pub evaluated_bounding_box_count: i32,
    /// Output only. The bounding boxes match metrics for each
    /// Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
    /// and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
    /// pair.
    #[prost(message, repeated, tag = "2")]
    pub bounding_box_metrics_entries: ::prost::alloc::vec::Vec<BoundingBoxMetricsEntry>,
    /// Output only. The single metric for bounding boxes evaluation:
    /// the mean_average_precision averaged over all bounding_box_metrics_entries.
    #[prost(float, tag = "3")]
    pub bounding_box_mean_average_precision: f32,
}
/// Input configuration for [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData] action.
///
/// The format of input depends on dataset_metadata the Dataset into which
/// the import is happening has. As input source the
/// [gcs_source][google.cloud.automl.v1.InputConfig.gcs_source]
/// is expected, unless specified otherwise. Additionally any input .CSV file
/// by itself must be 100MB or smaller, unless specified otherwise.
/// If an "example" file (that is, image, video etc.) with identical content
/// (even if it had different `GCS_FILE_PATH`) is mentioned multiple times, then
/// its label, bounding boxes etc. are appended. The same file should be always
/// provided with the same `ML_USE` and `GCS_FILE_PATH`, if it is not, then
/// these values are nondeterministically selected from the given ones.
///
/// The formats are represented in EBNF with commas being literal and with
/// non-terminal symbols defined near the end of this comment. The formats are:
///
/// <h4>AutoML Vision</h4>
///
///
/// <div class="ds-selector-tabs"><section><h5>Classification</h5>
///
/// See [Preparing your training
/// data](<https://cloud.google.com/vision/automl/docs/prepare>) for more
/// information.
///
/// CSV file(s) with each line in format:
///
///      ML_USE,GCS_FILE_PATH,LABEL,LABEL,...
///
/// *   `ML_USE` - Identifies the data set that the current row (file) applies
/// to.
///      This value can be one of the following:
///      * `TRAIN` - Rows in this file are used to train the model.
///      * `TEST` - Rows in this file are used to test the model during training.
///      * `UNASSIGNED` - Rows in this file are not categorized. They are
///         Automatically divided into train and test data. 80% for training and
///         20% for testing.
///
/// *   `GCS_FILE_PATH` - The Google Cloud Storage location of an image of up to
///       30MB in size. Supported extensions: .JPEG, .GIF, .PNG, .WEBP, .BMP,
///       .TIFF, .ICO.
///
/// *   `LABEL` - A label that identifies the object in the image.
///
/// For the `MULTICLASS` classification type, at most one `LABEL` is allowed
/// per image. If an image has not yet been labeled, then it should be
/// mentioned just once with no `LABEL`.
///
/// Some sample rows:
///
///      TRAIN,gs://folder/image1.jpg,daisy
///      TEST,gs://folder/image2.jpg,dandelion,tulip,rose
///      UNASSIGNED,gs://folder/image3.jpg,daisy
///      UNASSIGNED,gs://folder/image4.jpg
///
///
/// </section><section><h5>Object Detection</h5>
/// See [Preparing your training
/// data](<https://cloud.google.com/vision/automl/object-detection/docs/prepare>)
/// for more information.
///
/// A CSV file(s) with each line in format:
///
///      ML_USE,GCS_FILE_PATH,\[LABEL\],(BOUNDING_BOX | ,,,,,,,)
///
/// *   `ML_USE` - Identifies the data set that the current row (file) applies
/// to.
///      This value can be one of the following:
///      * `TRAIN` - Rows in this file are used to train the model.
///      * `TEST` - Rows in this file are used to test the model during training.
///      * `UNASSIGNED` - Rows in this file are not categorized. They are
///         Automatically divided into train and test data. 80% for training and
///         20% for testing.
///
/// *  `GCS_FILE_PATH` - The Google Cloud Storage location of an image of up to
///      30MB in size. Supported extensions: .JPEG, .GIF, .PNG. Each image
///      is assumed to be exhaustively labeled.
///
/// *  `LABEL` - A label that identifies the object in the image specified by the
///     `BOUNDING_BOX`.
///
/// *  `BOUNDING BOX` - The vertices of an object in the example image.
///     The minimum allowed `BOUNDING_BOX` edge length is 0.01, and no more than
///     500 `BOUNDING_BOX` instances per image are allowed (one `BOUNDING_BOX`
///     per line). If an image has no looked for objects then it should be
///     mentioned just once with no LABEL and the ",,,,,,," in place of the
///    `BOUNDING_BOX`.
///
/// **Four sample rows:**
///
///      TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,,
///      TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,,
///      UNASSIGNED,gs://folder/im2.png,car,0.1,0.1,0.2,0.1,0.2,0.3,0.1,0.3
///      TEST,gs://folder/im3.png,,,,,,,,,
///    </section>
/// </div>
///
///
/// <h4>AutoML Video Intelligence</h4>
///
///
/// <div class="ds-selector-tabs"><section><h5>Classification</h5>
///
/// See [Preparing your training
/// data](<https://cloud.google.com/video-intelligence/automl/docs/prepare>) for
/// more information.
///
/// CSV file(s) with each line in format:
///
///      ML_USE,GCS_FILE_PATH
///
/// For `ML_USE`, do not use `VALIDATE`.
///
/// `GCS_FILE_PATH` is the path to another .csv file that describes training
/// example for a given `ML_USE`, using the following row format:
///
///      GCS_FILE_PATH,(LABEL,TIME_SEGMENT_START,TIME_SEGMENT_END | ,,)
///
/// Here `GCS_FILE_PATH` leads to a video of up to 50GB in size and up
/// to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
///
/// `TIME_SEGMENT_START` and `TIME_SEGMENT_END` must be within the
/// length of the video, and the end time must be after the start time. Any
/// segment of a video which has one or more labels on it, is considered a
/// hard negative for all other labels. Any segment with no labels on
/// it is considered to be unknown. If a whole video is unknown, then
/// it should be mentioned just once with ",," in place of `LABEL,
/// TIME_SEGMENT_START,TIME_SEGMENT_END`.
///
/// Sample top level CSV file:
///
///      TRAIN,gs://folder/train_videos.csv
///      TEST,gs://folder/test_videos.csv
///      UNASSIGNED,gs://folder/other_videos.csv
///
/// Sample rows of a CSV file for a particular ML_USE:
///
///      gs://folder/video1.avi,car,120,180.000021
///      gs://folder/video1.avi,bike,150,180.000021
///      gs://folder/vid2.avi,car,0,60.5
///      gs://folder/vid3.avi,,,
///
///
///
/// </section><section><h5>Object Tracking</h5>
///
/// See [Preparing your training
/// data](/video-intelligence/automl/object-tracking/docs/prepare) for more
/// information.
///
/// CSV file(s) with each line in format:
///
///      ML_USE,GCS_FILE_PATH
///
/// For `ML_USE`, do not use `VALIDATE`.
///
/// `GCS_FILE_PATH` is the path to another .csv file that describes training
/// example for a given `ML_USE`, using the following row format:
///
///      GCS_FILE_PATH,LABEL,\[INSTANCE_ID\],TIMESTAMP,BOUNDING_BOX
///
/// or
///
///      GCS_FILE_PATH,,,,,,,,,,
///
/// Here `GCS_FILE_PATH` leads to a video of up to 50GB in size and up
/// to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
/// Providing `INSTANCE_ID`s can help to obtain a better model. When
/// a specific labeled entity leaves the video frame, and shows up
/// afterwards it is not required, albeit preferable, that the same
/// `INSTANCE_ID` is given to it.
///
/// `TIMESTAMP` must be within the length of the video, the
/// `BOUNDING_BOX` is assumed to be drawn on the closest video's frame
/// to the `TIMESTAMP`. Any mentioned by the `TIMESTAMP` frame is expected
/// to be exhaustively labeled and no more than 500 `BOUNDING_BOX`-es per
/// frame are allowed. If a whole video is unknown, then it should be
/// mentioned just once with ",,,,,,,,,," in place of `LABEL,
/// \[INSTANCE_ID\],TIMESTAMP,BOUNDING_BOX`.
///
/// Sample top level CSV file:
///
///       TRAIN,gs://folder/train_videos.csv
///       TEST,gs://folder/test_videos.csv
///       UNASSIGNED,gs://folder/other_videos.csv
///
/// Seven sample rows of a CSV file for a particular ML_USE:
///
///       gs://folder/video1.avi,car,1,12.10,0.8,0.8,0.9,0.8,0.9,0.9,0.8,0.9
///       gs://folder/video1.avi,car,1,12.90,0.4,0.8,0.5,0.8,0.5,0.9,0.4,0.9
///       gs://folder/video1.avi,car,2,12.10,.4,.2,.5,.2,.5,.3,.4,.3
///       gs://folder/video1.avi,car,2,12.90,.8,.2,,,.9,.3,,
///       gs://folder/video1.avi,bike,,12.50,.45,.45,,,.55,.55,,
///       gs://folder/video2.avi,car,1,0,.1,.9,,,.9,.1,,
///       gs://folder/video2.avi,,,,,,,,,,,
///    </section>
/// </div>
///
///
/// <h4>AutoML Natural Language</h4>
///
///
/// <div class="ds-selector-tabs"><section><h5>Entity Extraction</h5>
///
/// See [Preparing your training
/// data](/natural-language/automl/entity-analysis/docs/prepare) for more
/// information.
///
/// One or more CSV file(s) with each line in the following format:
///
///      ML_USE,GCS_FILE_PATH
///
/// *   `ML_USE` - Identifies the data set that the current row (file) applies
/// to.
///      This value can be one of the following:
///      * `TRAIN` - Rows in this file are used to train the model.
///      * `TEST` - Rows in this file are used to test the model during training.
///      * `UNASSIGNED` - Rows in this file are not categorized. They are
///         Automatically divided into train and test data. 80% for training and
///         20% for testing..
///
/// *   `GCS_FILE_PATH` - a Identifies JSON Lines (.JSONL) file stored in
///       Google Cloud Storage that contains in-line text in-line as documents
///       for model training.
///
/// After the training data set has been determined from the `TRAIN` and
/// `UNASSIGNED` CSV files, the training data is divided into train and
/// validation data sets. 70% for training and 30% for validation.
///
/// For example:
///
///      TRAIN,gs://folder/file1.jsonl
///      VALIDATE,gs://folder/file2.jsonl
///      TEST,gs://folder/file3.jsonl
///
/// **In-line JSONL files**
///
/// In-line .JSONL files contain, per line, a JSON document that wraps a
/// [`text_snippet`][google.cloud.automl.v1.TextSnippet] field followed by
/// one or more [`annotations`][google.cloud.automl.v1.AnnotationPayload]
/// fields, which have `display_name` and `text_extraction` fields to describe
/// the entity from the text snippet. Multiple JSON documents can be separated
/// using line breaks (\n).
///
/// The supplied text must be annotated exhaustively. For example, if you
/// include the text "horse", but do not label it as "animal",
/// then "horse" is assumed to not be an "animal".
///
/// Any given text snippet content must have 30,000 characters or
/// less, and also be UTF-8 NFC encoded. ASCII is accepted as it is
/// UTF-8 NFC encoded.
///
/// For example:
///
///      {
///        "text_snippet": {
///          "content": "dog car cat"
///        },
///        "annotations": [
///           {
///             "display_name": "animal",
///             "text_extraction": {
///               "text_segment": {"start_offset": 0, "end_offset": 2}
///            }
///           },
///           {
///            "display_name": "vehicle",
///             "text_extraction": {
///               "text_segment": {"start_offset": 4, "end_offset": 6}
///             }
///           },
///           {
///             "display_name": "animal",
///             "text_extraction": {
///               "text_segment": {"start_offset": 8, "end_offset": 10}
///             }
///           }
///       ]
///      }\n
///      {
///         "text_snippet": {
///           "content": "This dog is good."
///         },
///         "annotations": [
///            {
///              "display_name": "animal",
///              "text_extraction": {
///                "text_segment": {"start_offset": 5, "end_offset": 7}
///              }
///            }
///         ]
///      }
///
/// **JSONL files that reference documents**
///
/// .JSONL files contain, per line, a JSON document that wraps a
/// `input_config` that contains the path to a source document.
/// Multiple JSON documents can be separated using line breaks (\n).
///
/// Supported document extensions: .PDF, .TIF, .TIFF
///
/// For example:
///
///      {
///        "document": {
///          "input_config": {
///            "gcs_source": { "input_uris": \[ "gs://folder/document1.pdf" \]
///            }
///          }
///        }
///      }\n
///      {
///        "document": {
///          "input_config": {
///            "gcs_source": { "input_uris": \[ "gs://folder/document2.tif" \]
///            }
///          }
///        }
///      }
///
/// **In-line JSONL files with document layout information**
///
/// **Note:** You can only annotate documents using the UI. The format described
/// below applies to annotated documents exported using the UI or `exportData`.
///
/// In-line .JSONL files for documents contain, per line, a JSON document
/// that wraps a `document` field that provides the textual content of the
/// document and the layout information.
///
/// For example:
///
///      {
///        "document": {
///                "document_text": {
///                  "content": "dog car cat"
///                }
///                "layout": [
///                  {
///                    "text_segment": {
///                      "start_offset": 0,
///                      "end_offset": 11,
///                     },
///                     "page_number": 1,
///                     "bounding_poly": {
///                        "normalized_vertices": [
///                          {"x": 0.1, "y": 0.1},
///                          {"x": 0.1, "y": 0.3},
///                          {"x": 0.3, "y": 0.3},
///                          {"x": 0.3, "y": 0.1},
///                        ],
///                      },
///                      "text_segment_type": TOKEN,
///                  }
///                ],
///                "document_dimensions": {
///                  "width": 8.27,
///                  "height": 11.69,
///                  "unit": INCH,
///                }
///                "page_count": 3,
///              },
///              "annotations": [
///                {
///                  "display_name": "animal",
///                  "text_extraction": {
///                    "text_segment": {"start_offset": 0, "end_offset": 3}
///                  }
///                },
///                {
///                  "display_name": "vehicle",
///                  "text_extraction": {
///                    "text_segment": {"start_offset": 4, "end_offset": 7}
///                  }
///                },
///                {
///                  "display_name": "animal",
///                  "text_extraction": {
///                    "text_segment": {"start_offset": 8, "end_offset": 11}
///                  }
///                },
///              ],
///
///
///
///
/// </section><section><h5>Classification</h5>
///
/// See [Preparing your training
/// data](<https://cloud.google.com/natural-language/automl/docs/prepare>) for more
/// information.
///
/// One or more CSV file(s) with each line in the following format:
///
///      ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),LABEL,LABEL,...
///
/// *   `ML_USE` - Identifies the data set that the current row (file) applies
/// to.
///      This value can be one of the following:
///      * `TRAIN` - Rows in this file are used to train the model.
///      * `TEST` - Rows in this file are used to test the model during training.
///      * `UNASSIGNED` - Rows in this file are not categorized. They are
///         Automatically divided into train and test data. 80% for training and
///         20% for testing.
///
/// *   `TEXT_SNIPPET` and `GCS_FILE_PATH` are distinguished by a pattern. If
///      the column content is a valid Google Cloud Storage file path, that is,
///      prefixed by "gs://", it is treated as a `GCS_FILE_PATH`. Otherwise, if
///      the content is enclosed in double quotes (""), it is treated as a
///      `TEXT_SNIPPET`. For `GCS_FILE_PATH`, the path must lead to a
///      file with supported extension and UTF-8 encoding, for example,
///      "gs://folder/content.txt" AutoML imports the file content
///      as a text snippet. For `TEXT_SNIPPET`, AutoML imports the column content
///      excluding quotes. In both cases, size of the content must be 10MB or
///      less in size. For zip files, the size of each file inside the zip must be
///      10MB or less in size.
///
///      For the `MULTICLASS` classification type, at most one `LABEL` is allowed.
///
///      The `ML_USE` and `LABEL` columns are optional.
///      Supported file extensions: .TXT, .PDF, .TIF, .TIFF, .ZIP
///
/// A maximum of 100 unique labels are allowed per CSV row.
///
/// Sample rows:
///
///      TRAIN,"They have bad food and very rude",RudeService,BadFood
///      gs://folder/content.txt,SlowService
///      TEST,gs://folder/document.pdf
///      VALIDATE,gs://folder/text_files.zip,BadFood
///
///
///
/// </section><section><h5>Sentiment Analysis</h5>
///
/// See [Preparing your training
/// data](<https://cloud.google.com/natural-language/automl/docs/prepare>) for more
/// information.
///
/// CSV file(s) with each line in format:
///
///      ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),SENTIMENT
///
/// *   `ML_USE` - Identifies the data set that the current row (file) applies
/// to.
///      This value can be one of the following:
///      * `TRAIN` - Rows in this file are used to train the model.
///      * `TEST` - Rows in this file are used to test the model during training.
///      * `UNASSIGNED` - Rows in this file are not categorized. They are
///         Automatically divided into train and test data. 80% for training and
///         20% for testing.
///
/// *   `TEXT_SNIPPET` and `GCS_FILE_PATH` are distinguished by a pattern. If
///      the column content is a valid  Google Cloud Storage file path, that is,
///      prefixed by "gs://", it is treated as a `GCS_FILE_PATH`. Otherwise, if
///      the content is enclosed in double quotes (""), it is treated as a
///      `TEXT_SNIPPET`. For `GCS_FILE_PATH`, the path must lead to a
///      file with supported extension and UTF-8 encoding, for example,
///      "gs://folder/content.txt" AutoML imports the file content
///      as a text snippet. For `TEXT_SNIPPET`, AutoML imports the column content
///      excluding quotes. In both cases, size of the content must be 128kB or
///      less in size. For zip files, the size of each file inside the zip must be
///      128kB or less in size.
///
///      The `ML_USE` and `SENTIMENT` columns are optional.
///      Supported file extensions: .TXT, .PDF, .TIF, .TIFF, .ZIP
///
/// *  `SENTIMENT` - An integer between 0 and
///      Dataset.text_sentiment_dataset_metadata.sentiment_max
///      (inclusive). Describes the ordinal of the sentiment - higher
///      value means a more positive sentiment. All the values are
///      completely relative, i.e. neither 0 needs to mean a negative or
///      neutral sentiment nor sentiment_max needs to mean a positive one -
///      it is just required that 0 is the least positive sentiment
///      in the data, and sentiment_max is the  most positive one.
///      The SENTIMENT shouldn't be confused with "score" or "magnitude"
///      from the previous Natural Language Sentiment Analysis API.
///      All SENTIMENT values between 0 and sentiment_max must be
///      represented in the imported data. On prediction the same 0 to
///      sentiment_max range will be used. The difference between
///      neighboring sentiment values needs not to be uniform, e.g. 1 and
///      2 may be similar whereas the difference between 2 and 3 may be
///      large.
///
/// Sample rows:
///
///      TRAIN,"@freewrytin this is way too good for your product",2
///      gs://folder/content.txt,3
///      TEST,gs://folder/document.pdf
///      VALIDATE,gs://folder/text_files.zip,2
///    </section>
/// </div>
///
///
///
/// <h4>AutoML Tables</h4><div class="ui-datasection-main"><section
/// class="selected">
///
/// See [Preparing your training
/// data](<https://cloud.google.com/automl-tables/docs/prepare>) for more
/// information.
///
/// You can use either
/// [gcs_source][google.cloud.automl.v1.InputConfig.gcs_source] or
/// [bigquery_source][google.cloud.automl.v1.InputConfig.bigquery_source].
/// All input is concatenated into a
/// single
/// [primary_table_spec_id][google.cloud.automl.v1.TablesDatasetMetadata.primary_table_spec_id]
///
/// **For gcs_source:**
///
/// CSV file(s), where the first row of the first file is the header,
/// containing unique column names. If the first row of a subsequent
/// file is the same as the header, then it is also treated as a
/// header. All other rows contain values for the corresponding
/// columns.
///
/// Each .CSV file by itself must be 10GB or smaller, and their total
/// size must be 100GB or smaller.
///
/// First three sample rows of a CSV file:
/// <pre>
/// "Id","First Name","Last Name","Dob","Addresses"
/// "1","John","Doe","1968-01-22","\[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}\]"
/// "2","Jane","Doe","1980-10-16","\[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}\]}
/// </pre>
/// **For bigquery_source:**
///
/// An URI of a BigQuery table. The user data size of the BigQuery
/// table must be 100GB or smaller.
///
/// An imported table must have between 2 and 1,000 columns, inclusive,
/// and between 1000 and 100,000,000 rows, inclusive. There are at most 5
/// import data running in parallel.
///
///    </section>
/// </div>
///
///
/// **Input field definitions:**
///
/// `ML_USE`
/// : ("TRAIN" | "VALIDATE" | "TEST" | "UNASSIGNED")
///    Describes how the given example (file) should be used for model
///    training. "UNASSIGNED" can be used when user has no preference.
///
/// `GCS_FILE_PATH`
/// : The path to a file on Google Cloud Storage. For example,
///    "gs://folder/image1.png".
///
/// `LABEL`
/// : A display name of an object on an image, video etc., e.g. "dog".
///    Must be up to 32 characters long and can consist only of ASCII
///    Latin letters A-Z and a-z, underscores(_), and ASCII digits 0-9.
///    For each label an AnnotationSpec is created which display_name
///    becomes the label; AnnotationSpecs are given back in predictions.
///
/// `INSTANCE_ID`
/// : A positive integer that identifies a specific instance of a
///    labeled entity on an example. Used e.g. to track two cars on
///    a video while being able to tell apart which one is which.
///
/// `BOUNDING_BOX`
/// : (`VERTEX,VERTEX,VERTEX,VERTEX` | `VERTEX,,,VERTEX,,`)
///    A rectangle parallel to the frame of the example (image,
///    video). If 4 vertices are given they are connected by edges
///    in the order provided, if 2 are given they are recognized
///    as diagonally opposite vertices of the rectangle.
///
/// `VERTEX`
/// : (`COORDINATE,COORDINATE`)
///    First coordinate is horizontal (x), the second is vertical (y).
///
/// `COORDINATE`
/// : A float in 0 to 1 range, relative to total length of
///    image or video in given dimension. For fractions the
///    leading non-decimal 0 can be omitted (i.e. 0.3 = .3).
///    Point 0,0 is in top left.
///
/// `TIME_SEGMENT_START`
/// : (`TIME_OFFSET`)
///    Expresses a beginning, inclusive, of a time segment
///    within an example that has a time dimension
///    (e.g. video).
///
/// `TIME_SEGMENT_END`
/// : (`TIME_OFFSET`)
///    Expresses an end, exclusive, of a time segment within
///    n example that has a time dimension (e.g. video).
///
/// `TIME_OFFSET`
/// : A number of seconds as measured from the start of an
///    example (e.g. video). Fractions are allowed, up to a
///    microsecond precision. "inf" is allowed, and it means the end
///    of the example.
///
/// `TEXT_SNIPPET`
/// : The content of a text snippet, UTF-8 encoded, enclosed within
///    double quotes ("").
///
/// `DOCUMENT`
/// : A field that provides the textual content with document and the layout
///    information.
///
///
///   **Errors:**
///
///   If any of the provided CSV files can't be parsed or if more than certain
///   percent of CSV rows cannot be processed then the operation fails and
///   nothing is imported. Regardless of overall success or failure the per-row
///   failures, up to a certain count cap, is listed in
///   Operation.metadata.partial_failures.
///
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct InputConfig {
    /// Additional domain-specific parameters describing the semantic of the
    /// imported data, any string must be up to 25000
    /// characters long.
    ///
    /// <h4>AutoML Tables</h4>
    ///
    /// `schema_inference_version`
    /// : (integer) This value must be supplied.
    ///    The version of the
    ///    algorithm to use for the initial inference of the
    ///    column data types of the imported table. Allowed values: "1".
    #[prost(btree_map = "string, string", tag = "2")]
    pub params: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
    /// The source of the input.
    #[prost(oneof = "input_config::Source", tags = "1")]
    pub source: ::core::option::Option<input_config::Source>,
}
/// Nested message and enum types in `InputConfig`.
pub mod input_config {
    /// The source of the input.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Source {
        /// The Google Cloud Storage location for the input content.
        /// For [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData], `gcs_source` points to a CSV file with
        /// a structure described in [InputConfig][google.cloud.automl.v1.InputConfig].
        #[prost(message, tag = "1")]
        GcsSource(super::GcsSource),
    }
}
/// Input configuration for BatchPredict Action.
///
/// The format of input depends on the ML problem of the model used for
/// prediction. As input source the
/// [gcs_source][google.cloud.automl.v1.InputConfig.gcs_source]
/// is expected, unless specified otherwise.
///
/// The formats are represented in EBNF with commas being literal and with
/// non-terminal symbols defined near the end of this comment. The formats
/// are:
///
/// <h4>AutoML Vision</h4>
/// <div class="ds-selector-tabs"><section><h5>Classification</h5>
///
/// One or more CSV files where each line is a single column:
///
///      GCS_FILE_PATH
///
/// The Google Cloud Storage location of an image of up to
/// 30MB in size. Supported extensions: .JPEG, .GIF, .PNG.
/// This path is treated as the ID in the batch predict output.
///
/// Sample rows:
///
///      gs://folder/image1.jpeg
///      gs://folder/image2.gif
///      gs://folder/image3.png
///
/// </section><section><h5>Object Detection</h5>
///
/// One or more CSV files where each line is a single column:
///
///      GCS_FILE_PATH
///
/// The Google Cloud Storage location of an image of up to
/// 30MB in size. Supported extensions: .JPEG, .GIF, .PNG.
/// This path is treated as the ID in the batch predict output.
///
/// Sample rows:
///
///      gs://folder/image1.jpeg
///      gs://folder/image2.gif
///      gs://folder/image3.png
///    </section>
/// </div>
///
/// <h4>AutoML Video Intelligence</h4>
/// <div class="ds-selector-tabs"><section><h5>Classification</h5>
///
/// One or more CSV files where each line is a single column:
///
///      GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END
///
/// `GCS_FILE_PATH` is the Google Cloud Storage location of video up to 50GB in
/// size and up to 3h in duration duration.
/// Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
///
/// `TIME_SEGMENT_START` and `TIME_SEGMENT_END` must be within the
/// length of the video, and the end time must be after the start time.
///
/// Sample rows:
///
///      gs://folder/video1.mp4,10,40
///      gs://folder/video1.mp4,20,60
///      gs://folder/vid2.mov,0,inf
///
/// </section><section><h5>Object Tracking</h5>
///
/// One or more CSV files where each line is a single column:
///
///      GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END
///
/// `GCS_FILE_PATH` is the Google Cloud Storage location of video up to 50GB in
/// size and up to 3h in duration duration.
/// Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
///
/// `TIME_SEGMENT_START` and `TIME_SEGMENT_END` must be within the
/// length of the video, and the end time must be after the start time.
///
/// Sample rows:
///
///      gs://folder/video1.mp4,10,40
///      gs://folder/video1.mp4,20,60
///      gs://folder/vid2.mov,0,inf
///    </section>
/// </div>
///
/// <h4>AutoML Natural Language</h4>
/// <div class="ds-selector-tabs"><section><h5>Classification</h5>
///
/// One or more CSV files where each line is a single column:
///
///      GCS_FILE_PATH
///
/// `GCS_FILE_PATH` is the Google Cloud Storage location of a text file.
/// Supported file extensions: .TXT, .PDF, .TIF, .TIFF
///
/// Text files can be no larger than 10MB in size.
///
/// Sample rows:
///
///      gs://folder/text1.txt
///      gs://folder/text2.pdf
///      gs://folder/text3.tif
///
/// </section><section><h5>Sentiment Analysis</h5>
/// One or more CSV files where each line is a single column:
///
///      GCS_FILE_PATH
///
/// `GCS_FILE_PATH` is the Google Cloud Storage location of a text file.
/// Supported file extensions: .TXT, .PDF, .TIF, .TIFF
///
/// Text files can be no larger than 128kB in size.
///
/// Sample rows:
///
///      gs://folder/text1.txt
///      gs://folder/text2.pdf
///      gs://folder/text3.tif
///
/// </section><section><h5>Entity Extraction</h5>
///
/// One or more JSONL (JSON Lines) files that either provide inline text or
/// documents. You can only use one format, either inline text or documents,
/// for a single call to \[AutoMl.BatchPredict\].
///
/// Each JSONL file contains a per line a proto that
/// wraps a temporary user-assigned TextSnippet ID (string up to 2000
/// characters long) called "id", a TextSnippet proto (in
/// JSON representation) and zero or more TextFeature protos. Any given
/// text snippet content must have 30,000 characters or less, and also
/// be UTF-8 NFC encoded (ASCII already is). The IDs provided should be
/// unique.
///
/// Each document JSONL file contains, per line, a proto that wraps a Document
/// proto with `input_config` set. Each document cannot exceed 2MB in size.
///
/// Supported document extensions: .PDF, .TIF, .TIFF
///
/// Each JSONL file must not exceed 100MB in size, and no more than 20
/// JSONL files may be passed.
///
/// Sample inline JSONL file (Shown with artificial line
/// breaks. Actual line breaks are denoted by "\n".):
///
///      {
///         "id": "my_first_id",
///         "text_snippet": { "content": "dog car cat"},
///         "text_features": [
///           {
///             "text_segment": {"start_offset": 4, "end_offset": 6},
///             "structural_type": PARAGRAPH,
///             "bounding_poly": {
///               "normalized_vertices": [
///                 {"x": 0.1, "y": 0.1},
///                 {"x": 0.1, "y": 0.3},
///                 {"x": 0.3, "y": 0.3},
///                 {"x": 0.3, "y": 0.1},
///               ]
///             },
///           }
///         ],
///       }\n
///       {
///         "id": "2",
///         "text_snippet": {
///           "content": "Extended sample content",
///           "mime_type": "text/plain"
///         }
///       }
///
/// Sample document JSONL file (Shown with artificial line
/// breaks. Actual line breaks are denoted by "\n".):
///
///       {
///         "document": {
///           "input_config": {
///             "gcs_source": { "input_uris": \[ "gs://folder/document1.pdf" \]
///             }
///           }
///         }
///       }\n
///       {
///         "document": {
///           "input_config": {
///             "gcs_source": { "input_uris": \[ "gs://folder/document2.tif" \]
///             }
///           }
///         }
///       }
///    </section>
/// </div>
///
/// <h4>AutoML Tables</h4><div class="ui-datasection-main"><section
/// class="selected">
///
/// See [Preparing your training
/// data](<https://cloud.google.com/automl-tables/docs/predict-batch>) for more
/// information.
///
/// You can use either
/// [gcs_source][google.cloud.automl.v1.BatchPredictInputConfig.gcs_source]
/// or
/// [bigquery_source][BatchPredictInputConfig.bigquery_source].
///
/// **For gcs_source:**
///
/// CSV file(s), each by itself 10GB or smaller and total size must be
/// 100GB or smaller, where first file must have a header containing
/// column names. If the first row of a subsequent file is the same as
/// the header, then it is also treated as a header. All other rows
/// contain values for the corresponding columns.
///
/// The column names must contain the model's
/// [input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs]
/// [display_name-s][google.cloud.automl.v1.ColumnSpec.display_name]
/// (order doesn't matter). The columns corresponding to the model's
/// input feature column specs must contain values compatible with the
/// column spec's data types. Prediction on all the rows, i.e. the CSV
/// lines, will be attempted.
///
///
/// Sample rows from a CSV file:
/// <pre>
/// "First Name","Last Name","Dob","Addresses"
/// "John","Doe","1968-01-22","\[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}\]"
/// "Jane","Doe","1980-10-16","\[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}\]}
/// </pre>
/// **For bigquery_source:**
///
/// The URI of a BigQuery table. The user data size of the BigQuery
/// table must be 100GB or smaller.
///
/// The column names must contain the model's
/// [input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs]
/// [display_name-s][google.cloud.automl.v1.ColumnSpec.display_name]
/// (order doesn't matter). The columns corresponding to the model's
/// input feature column specs must contain values compatible with the
/// column spec's data types. Prediction on all the rows of the table
/// will be attempted.
///    </section>
/// </div>
///
/// **Input field definitions:**
///
/// `GCS_FILE_PATH`
/// : The path to a file on Google Cloud Storage. For example,
///    "gs://folder/video.avi".
///
/// `TIME_SEGMENT_START`
/// : (`TIME_OFFSET`)
///    Expresses a beginning, inclusive, of a time segment
///    within an example that has a time dimension
///    (e.g. video).
///
/// `TIME_SEGMENT_END`
/// : (`TIME_OFFSET`)
///    Expresses an end, exclusive, of a time segment within
///    n example that has a time dimension (e.g. video).
///
/// `TIME_OFFSET`
/// : A number of seconds as measured from the start of an
///    example (e.g. video). Fractions are allowed, up to a
///    microsecond precision. "inf" is allowed, and it means the end
///    of the example.
///
///   **Errors:**
///
///   If any of the provided CSV files can't be parsed or if more than certain
///   percent of CSV rows cannot be processed then the operation fails and
///   prediction does not happen. Regardless of overall success or failure the
///   per-row failures, up to a certain count cap, will be listed in
///   Operation.metadata.partial_failures.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BatchPredictInputConfig {
    /// The source of the input.
    #[prost(oneof = "batch_predict_input_config::Source", tags = "1")]
    pub source: ::core::option::Option<batch_predict_input_config::Source>,
}
/// Nested message and enum types in `BatchPredictInputConfig`.
pub mod batch_predict_input_config {
    /// The source of the input.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Source {
        /// Required. The Google Cloud Storage location for the input content.
        #[prost(message, tag = "1")]
        GcsSource(super::GcsSource),
    }
}
/// Input configuration of a [Document][google.cloud.automl.v1.Document].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DocumentInputConfig {
    /// The Google Cloud Storage location of the document file. Only a single path
    /// should be given.
    ///
    /// Max supported size: 512MB.
    ///
    /// Supported extensions: .PDF.
    #[prost(message, optional, tag = "1")]
    pub gcs_source: ::core::option::Option<GcsSource>,
}
/// *  For Translation:
///          CSV file `translation.csv`, with each line in format:
///          ML_USE,GCS_FILE_PATH
///          GCS_FILE_PATH leads to a .TSV file which describes examples that have
///          given ML_USE, using the following row format per line:
///          TEXT_SNIPPET (in source language) \t TEXT_SNIPPET (in target
///          language)
///
///    *  For Tables:
///          Output depends on whether the dataset was imported from Google Cloud
///          Storage or BigQuery.
///          Google Cloud Storage case:
///            [gcs_destination][google.cloud.automl.v1p1beta.OutputConfig.gcs_destination]
///            must be set. Exported are CSV file(s) `tables_1.csv`,
///            `tables_2.csv`,...,`tables_N.csv` with each having as header line
///            the table's column names, and all other lines contain values for
///            the header columns.
///          BigQuery case:
///            [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
///            pointing to a BigQuery project must be set. In the given project a
///            new dataset will be created with name
///            `export_data_<automl-dataset-display-name>_<timestamp-of-export-call>`
///            where <automl-dataset-display-name> will be made
///            BigQuery-dataset-name compatible (e.g. most special characters will
///            become underscores), and timestamp will be in
///            YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In that
///            dataset a new table called `primary_table` will be created, and
///            filled with precisely the same data as this obtained on import.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct OutputConfig {
    /// The destination of the output.
    #[prost(oneof = "output_config::Destination", tags = "1")]
    pub destination: ::core::option::Option<output_config::Destination>,
}
/// Nested message and enum types in `OutputConfig`.
pub mod output_config {
    /// The destination of the output.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Destination {
        /// Required. The Google Cloud Storage location where the output is to be written to.
        /// For Image Object Detection, Text Extraction, Video Classification and
        /// Tables, in the given directory a new directory will be created with name:
        /// export_data-<dataset-display-name>-<timestamp-of-export-call> where
        /// timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. All export
        /// output will be written into that directory.
        #[prost(message, tag = "1")]
        GcsDestination(super::GcsDestination),
    }
}
/// Output configuration for BatchPredict Action.
///
/// As destination the
/// [gcs_destination][google.cloud.automl.v1.BatchPredictOutputConfig.gcs_destination]
/// must be set unless specified otherwise for a domain. If gcs_destination is
/// set then in the given directory a new directory is created. Its name
/// will be
/// "prediction-<model-display-name>-<timestamp-of-prediction-call>",
/// where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents
/// of it depends on the ML problem the predictions are made for.
///
///   *  For Image Classification:
///          In the created directory files `image_classification_1.jsonl`,
///          `image_classification_2.jsonl`,...,`image_classification_N.jsonl`
///          will be created, where N may be 1, and depends on the
///          total number of the successfully predicted images and annotations.
///          A single image will be listed only once with all its annotations,
///          and its annotations will never be split across files.
///          Each .JSONL file will contain, per line, a JSON representation of a
///          proto that wraps image's "ID" : "<id_value>" followed by a list of
///          zero or more AnnotationPayload protos (called annotations), which
///          have classification detail populated.
///          If prediction for any image failed (partially or completely), then an
///          additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl`
///          files will be created (N depends on total number of failed
///          predictions). These files will have a JSON representation of a proto
///          that wraps the same "ID" : "<id_value>" but here followed by
///          exactly one
///          [`google.rpc.Status`](<https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto>)
///          containing only `code` and `message`fields.
///
///   *  For Image Object Detection:
///          In the created directory files `image_object_detection_1.jsonl`,
///          `image_object_detection_2.jsonl`,...,`image_object_detection_N.jsonl`
///          will be created, where N may be 1, and depends on the
///          total number of the successfully predicted images and annotations.
///          Each .JSONL file will contain, per line, a JSON representation of a
///          proto that wraps image's "ID" : "<id_value>" followed by a list of
///          zero or more AnnotationPayload protos (called annotations), which
///          have image_object_detection detail populated. A single image will
///          be listed only once with all its annotations, and its annotations
///          will never be split across files.
///          If prediction for any image failed (partially or completely), then
///          additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl`
///          files will be created (N depends on total number of failed
///          predictions). These files will have a JSON representation of a proto
///          that wraps the same "ID" : "<id_value>" but here followed by
///          exactly one
///          [`google.rpc.Status`](<https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto>)
///          containing only `code` and `message`fields.
///   *  For Video Classification:
///          In the created directory a video_classification.csv file, and a .JSON
///          file per each video classification requested in the input (i.e. each
///          line in given CSV(s)), will be created.
///
///          The format of video_classification.csv is:
///          GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
///          where:
///          GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
///              the prediction input lines (i.e. video_classification.csv has
///              precisely the same number of lines as the prediction input had.)
///          JSON_FILE_NAME = Name of .JSON file in the output directory, which
///              contains prediction responses for the video time segment.
///          STATUS = "OK" if prediction completed successfully, or an error code
///              with message otherwise. If STATUS is not "OK" then the .JSON file
///              for that line may not exist or be empty.
///
///          Each .JSON file, assuming STATUS is "OK", will contain a list of
///          AnnotationPayload protos in JSON format, which are the predictions
///          for the video time segment the file is assigned to in the
///          video_classification.csv. All AnnotationPayload protos will have
///          video_classification field set, and will be sorted by
///          video_classification.type field (note that the returned types are
///          governed by `classifaction_types` parameter in
///          [PredictService.BatchPredictRequest.params][]).
///
///   *  For Video Object Tracking:
///          In the created directory a video_object_tracking.csv file will be
///          created, and multiple files video_object_trackinng_1.json,
///          video_object_trackinng_2.json,..., video_object_trackinng_N.json,
///          where N is the number of requests in the input (i.e. the number of
///          lines in given CSV(s)).
///
///          The format of video_object_tracking.csv is:
///          GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
///          where:
///          GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
///              the prediction input lines (i.e. video_object_tracking.csv has
///              precisely the same number of lines as the prediction input had.)
///          JSON_FILE_NAME = Name of .JSON file in the output directory, which
///              contains prediction responses for the video time segment.
///          STATUS = "OK" if prediction completed successfully, or an error
///              code with message otherwise. If STATUS is not "OK" then the .JSON
///              file for that line may not exist or be empty.
///
///          Each .JSON file, assuming STATUS is "OK", will contain a list of
///          AnnotationPayload protos in JSON format, which are the predictions
///          for each frame of the video time segment the file is assigned to in
///          video_object_tracking.csv. All AnnotationPayload protos will have
///          video_object_tracking field set.
///   *  For Text Classification:
///          In the created directory files `text_classification_1.jsonl`,
///          `text_classification_2.jsonl`,...,`text_classification_N.jsonl`
///          will be created, where N may be 1, and depends on the
///          total number of inputs and annotations found.
///
///          Each .JSONL file will contain, per line, a JSON representation of a
///          proto that wraps input text file (or document) in
///          the text snippet (or document) proto and a list of
///          zero or more AnnotationPayload protos (called annotations), which
///          have classification detail populated. A single text file (or
///          document) will be listed only once with all its annotations, and its
///          annotations will never be split across files.
///
///          If prediction for any input file (or document) failed (partially or
///          completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
///          `errors_N.jsonl` files will be created (N depends on total number of
///          failed predictions). These files will have a JSON representation of a
///          proto that wraps input file followed by exactly one
///          [`google.rpc.Status`](<https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto>)
///          containing only `code` and `message`.
///
///   *  For Text Sentiment:
///          In the created directory files `text_sentiment_1.jsonl`,
///          `text_sentiment_2.jsonl`,...,`text_sentiment_N.jsonl`
///          will be created, where N may be 1, and depends on the
///          total number of inputs and annotations found.
///
///          Each .JSONL file will contain, per line, a JSON representation of a
///          proto that wraps input text file (or document) in
///          the text snippet (or document) proto and a list of
///          zero or more AnnotationPayload protos (called annotations), which
///          have text_sentiment detail populated. A single text file (or
///          document) will be listed only once with all its annotations, and its
///          annotations will never be split across files.
///
///          If prediction for any input file (or document) failed (partially or
///          completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
///          `errors_N.jsonl` files will be created (N depends on total number of
///          failed predictions). These files will have a JSON representation of a
///          proto that wraps input file followed by exactly one
///          [`google.rpc.Status`](<https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto>)
///          containing only `code` and `message`.
///
///    *  For Text Extraction:
///          In the created directory files `text_extraction_1.jsonl`,
///          `text_extraction_2.jsonl`,...,`text_extraction_N.jsonl`
///          will be created, where N may be 1, and depends on the
///          total number of inputs and annotations found.
///          The contents of these .JSONL file(s) depend on whether the input
///          used inline text, or documents.
///          If input was inline, then each .JSONL file will contain, per line,
///            a JSON representation of a proto that wraps given in request text
///            snippet's "id" (if specified), followed by input text snippet,
///            and a list of zero or more
///            AnnotationPayload protos (called annotations), which have
///            text_extraction detail populated. A single text snippet will be
///            listed only once with all its annotations, and its annotations will
///            never be split across files.
///          If input used documents, then each .JSONL file will contain, per
///            line, a JSON representation of a proto that wraps given in request
///            document proto, followed by its OCR-ed representation in the form
///            of a text snippet, finally followed by a list of zero or more
///            AnnotationPayload protos (called annotations), which have
///            text_extraction detail populated and refer, via their indices, to
///            the OCR-ed text snippet. A single document (and its text snippet)
///            will be listed only once with all its annotations, and its
///            annotations will never be split across files.
///          If prediction for any text snippet failed (partially or completely),
///          then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
///          `errors_N.jsonl` files will be created (N depends on total number of
///          failed predictions). These files will have a JSON representation of a
///          proto that wraps either the "id" : "<id_value>" (in case of inline)
///          or the document proto (in case of document) but here followed by
///          exactly one
///          [`google.rpc.Status`](<https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto>)
///          containing only `code` and `message`.
///
///   *  For Tables:
///          Output depends on whether
///          [gcs_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.gcs_destination]
///          or
///          [bigquery_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.bigquery_destination]
///          is set (either is allowed).
///          Google Cloud Storage case:
///            In the created directory files `tables_1.csv`, `tables_2.csv`,...,
///            `tables_N.csv` will be created, where N may be 1, and depends on
///            the total number of the successfully predicted rows.
///            For all CLASSIFICATION
///            [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
///              Each .csv file will contain a header, listing all columns'
///              [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
///              given on input followed by M target column names in the format of
///              "<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
///              [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>_<target
///              value>_score" where M is the number of distinct target values,
///              i.e. number of distinct values in the target column of the table
///              used to train the model. Subsequent lines will contain the
///              respective values of successfully predicted rows, with the last,
///              i.e. the target, columns having the corresponding prediction
///              [scores][google.cloud.automl.v1p1beta.TablesAnnotation.score].
///            For REGRESSION and FORECASTING
///            [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
///              Each .csv file will contain a header, listing all columns'
///              [display_name-s][google.cloud.automl.v1p1beta.display_name]
///              given on input followed by the predicted target column with name
///              in the format of
///              "predicted_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
///              [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
///              Subsequent lines will contain the respective values of
///              successfully predicted rows, with the last, i.e. the target,
///              column having the predicted target value.
///              If prediction for any rows failed, then an additional
///              `errors_1.csv`, `errors_2.csv`,..., `errors_N.csv` will be
///              created (N depends on total number of failed rows). These files
///              will have analogous format as `tables_*.csv`, but always with a
///              single target column having
///              [`google.rpc.Status`](<https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto>)
///              represented as a JSON string, and containing only `code` and
///              `message`.
///          BigQuery case:
///            [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
///            pointing to a BigQuery project must be set. In the given project a
///            new dataset will be created with name
///            `prediction_<model-display-name>_<timestamp-of-prediction-call>`
///            where <model-display-name> will be made
///            BigQuery-dataset-name compatible (e.g. most special characters will
///            become underscores), and timestamp will be in
///            YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset
///            two tables will be created, `predictions`, and `errors`.
///            The `predictions` table's column names will be the input columns'
///            [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
///            followed by the target column with name in the format of
///            "predicted_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
///            [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
///            The input feature columns will contain the respective values of
///            successfully predicted rows, with the target column having an
///            ARRAY of
///            [AnnotationPayloads][google.cloud.automl.v1p1beta.AnnotationPayload],
///            represented as STRUCT-s, containing
///            [TablesAnnotation][google.cloud.automl.v1p1beta.TablesAnnotation].
///            The `errors` table contains rows for which the prediction has
///            failed, it has analogous input columns while the target column name
///            is in the format of
///            "errors_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
///            [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>",
///            and as a value has
///            [`google.rpc.Status`](<https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto>)
///            represented as a STRUCT, and containing only `code` and `message`.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BatchPredictOutputConfig {
    /// The destination of the output.
    #[prost(oneof = "batch_predict_output_config::Destination", tags = "1")]
    pub destination: ::core::option::Option<batch_predict_output_config::Destination>,
}
/// Nested message and enum types in `BatchPredictOutputConfig`.
pub mod batch_predict_output_config {
    /// The destination of the output.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Destination {
        /// Required. The Google Cloud Storage location of the directory where the output is to
        /// be written to.
        #[prost(message, tag = "1")]
        GcsDestination(super::GcsDestination),
    }
}
/// Output configuration for ModelExport Action.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ModelExportOutputConfig {
    /// The format in which the model must be exported. The available, and default,
    /// formats depend on the problem and model type (if given problem and type
    /// combination doesn't have a format listed, it means its models are not
    /// exportable):
    ///
    /// *  For Image Classification mobile-low-latency-1, mobile-versatile-1,
    ///         mobile-high-accuracy-1:
    ///       "tflite" (default), "edgetpu_tflite", "tf_saved_model", "tf_js",
    ///       "docker".
    ///
    /// *  For Image Classification mobile-core-ml-low-latency-1,
    ///         mobile-core-ml-versatile-1, mobile-core-ml-high-accuracy-1:
    ///       "core_ml" (default).
    ///
    /// *  For Image Object Detection mobile-low-latency-1, mobile-versatile-1,
    ///         mobile-high-accuracy-1:
    ///       "tflite", "tf_saved_model", "tf_js".
    /// Formats description:
    ///
    /// * tflite - Used for Android mobile devices.
    /// * edgetpu_tflite - Used for [Edge TPU](<https://cloud.google.com/edge-tpu/>)
    ///                     devices.
    /// * tf_saved_model - A tensorflow model in SavedModel format.
    /// * tf_js - A [TensorFlow.js](<https://www.tensorflow.org/js>) model that can
    ///            be used in the browser and in Node.js using JavaScript.
    /// * docker - Used for Docker containers. Use the params field to customize
    ///             the container. The container is verified to work correctly on
    ///             ubuntu 16.04 operating system. See more at
    ///             [containers
    ///             quickstart](<https://cloud.google.com/vision/automl/docs/containers-gcs-quickstart>)
    /// * core_ml - Used for iOS mobile devices.
    #[prost(string, tag = "4")]
    pub model_format: ::prost::alloc::string::String,
    /// Additional model-type and format specific parameters describing the
    /// requirements for the to be exported model files, any string must be up to
    /// 25000 characters long.
    ///
    ///   * For `docker` format:
    ///      `cpu_architecture` - (string) "x86_64" (default).
    ///      `gpu_architecture` - (string) "none" (default), "nvidia".
    #[prost(btree_map = "string, string", tag = "2")]
    pub params: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
    /// The destination of the output.
    #[prost(oneof = "model_export_output_config::Destination", tags = "1")]
    pub destination: ::core::option::Option<model_export_output_config::Destination>,
}
/// Nested message and enum types in `ModelExportOutputConfig`.
pub mod model_export_output_config {
    /// The destination of the output.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Destination {
        /// Required. The Google Cloud Storage location where the model is to be written to.
        /// This location may only be set for the following model formats:
        ///    "tflite", "edgetpu_tflite", "tf_saved_model", "tf_js", "core_ml".
        ///
        ///   Under the directory given as the destination a new one with name
        ///   "model-export-<model-display-name>-<timestamp-of-export-call>",
        ///   where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format,
        ///   will be created. Inside the model and any of its supporting files
        ///   will be written.
        #[prost(message, tag = "1")]
        GcsDestination(super::GcsDestination),
    }
}
/// The Google Cloud Storage location for the input content.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GcsSource {
    /// Required. Google Cloud Storage URIs to input files, up to 2000
    /// characters long. Accepted forms:
    /// * Full object path, e.g. gs://bucket/directory/object.csv
    #[prost(string, repeated, tag = "1")]
    pub input_uris: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
}
/// The Google Cloud Storage location where the output is to be written to.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GcsDestination {
    /// Required. Google Cloud Storage URI to output directory, up to 2000
    /// characters long.
    /// Accepted forms:
    /// * Prefix path: gs://bucket/directory
    /// The requesting user must have write permission to the bucket.
    /// The directory is created if it doesn't exist.
    #[prost(string, tag = "1")]
    pub output_uri_prefix: ::prost::alloc::string::String,
}
/// A contiguous part of a text (string), assuming it has an UTF-8 NFC encoding.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TextSegment {
    /// Output only. The content of the TextSegment.
    #[prost(string, tag = "3")]
    pub content: ::prost::alloc::string::String,
    /// Required. Zero-based character index of the first character of the text
    /// segment (counting characters from the beginning of the text).
    #[prost(int64, tag = "1")]
    pub start_offset: i64,
    /// Required. Zero-based character index of the first character past the end of
    /// the text segment (counting character from the beginning of the text).
    /// The character at the end_offset is NOT included in the text segment.
    #[prost(int64, tag = "2")]
    pub end_offset: i64,
}
/// A representation of an image.
/// Only images up to 30MB in size are supported.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Image {
    /// Output only. HTTP URI to the thumbnail image.
    #[prost(string, tag = "4")]
    pub thumbnail_uri: ::prost::alloc::string::String,
    /// Input only. The data representing the image.
    /// For Predict calls [image_bytes][google.cloud.automl.v1.Image.image_bytes] must be set .
    #[prost(oneof = "image::Data", tags = "1")]
    pub data: ::core::option::Option<image::Data>,
}
/// Nested message and enum types in `Image`.
pub mod image {
    /// Input only. The data representing the image.
    /// For Predict calls [image_bytes][google.cloud.automl.v1.Image.image_bytes] must be set .
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Data {
        /// Image content represented as a stream of bytes.
        /// Note: As with all `bytes` fields, protobuffers use a pure binary
        /// representation, whereas JSON representations use base64.
        #[prost(bytes, tag = "1")]
        ImageBytes(::prost::bytes::Bytes),
    }
}
/// A representation of a text snippet.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TextSnippet {
    /// Required. The content of the text snippet as a string. Up to 250000
    /// characters long.
    #[prost(string, tag = "1")]
    pub content: ::prost::alloc::string::String,
    /// Optional. The format of [content][google.cloud.automl.v1.TextSnippet.content]. Currently the only two allowed
    /// values are "text/html" and "text/plain". If left blank, the format is
    /// automatically determined from the type of the uploaded [content][google.cloud.automl.v1.TextSnippet.content].
    #[prost(string, tag = "2")]
    pub mime_type: ::prost::alloc::string::String,
    /// Output only. HTTP URI where you can download the content.
    #[prost(string, tag = "4")]
    pub content_uri: ::prost::alloc::string::String,
}
/// Message that describes dimension of a document.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct DocumentDimensions {
    /// Unit of the dimension.
    #[prost(enumeration = "document_dimensions::DocumentDimensionUnit", tag = "1")]
    pub unit: i32,
    /// Width value of the document, works together with the unit.
    #[prost(float, tag = "2")]
    pub width: f32,
    /// Height value of the document, works together with the unit.
    #[prost(float, tag = "3")]
    pub height: f32,
}
/// Nested message and enum types in `DocumentDimensions`.
pub mod document_dimensions {
    /// Unit of the document dimension.
    #[derive(
        Clone,
        Copy,
        Debug,
        PartialEq,
        Eq,
        Hash,
        PartialOrd,
        Ord,
        ::prost::Enumeration
    )]
    #[repr(i32)]
    pub enum DocumentDimensionUnit {
        /// Should not be used.
        Unspecified = 0,
        /// Document dimension is measured in inches.
        Inch = 1,
        /// Document dimension is measured in centimeters.
        Centimeter = 2,
        /// Document dimension is measured in points. 72 points = 1 inch.
        Point = 3,
    }
    impl DocumentDimensionUnit {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                DocumentDimensionUnit::Unspecified => {
                    "DOCUMENT_DIMENSION_UNIT_UNSPECIFIED"
                }
                DocumentDimensionUnit::Inch => "INCH",
                DocumentDimensionUnit::Centimeter => "CENTIMETER",
                DocumentDimensionUnit::Point => "POINT",
            }
        }
        /// Creates an enum from field names used in the ProtoBuf definition.
        pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
            match value {
                "DOCUMENT_DIMENSION_UNIT_UNSPECIFIED" => Some(Self::Unspecified),
                "INCH" => Some(Self::Inch),
                "CENTIMETER" => Some(Self::Centimeter),
                "POINT" => Some(Self::Point),
                _ => None,
            }
        }
    }
}
/// A structured text document e.g. a PDF.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Document {
    /// An input config specifying the content of the document.
    #[prost(message, optional, tag = "1")]
    pub input_config: ::core::option::Option<DocumentInputConfig>,
    /// The plain text version of this document.
    #[prost(message, optional, tag = "2")]
    pub document_text: ::core::option::Option<TextSnippet>,
    /// Describes the layout of the document.
    /// Sorted by [page_number][].
    #[prost(message, repeated, tag = "3")]
    pub layout: ::prost::alloc::vec::Vec<document::Layout>,
    /// The dimensions of the page in the document.
    #[prost(message, optional, tag = "4")]
    pub document_dimensions: ::core::option::Option<DocumentDimensions>,
    /// Number of pages in the document.
    #[prost(int32, tag = "5")]
    pub page_count: i32,
}
/// Nested message and enum types in `Document`.
pub mod document {
    /// Describes the layout information of a [text_segment][google.cloud.automl.v1.Document.Layout.text_segment] in the document.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct Layout {
        /// Text Segment that represents a segment in
        /// [document_text][google.cloud.automl.v1p1beta.Document.document_text].
        #[prost(message, optional, tag = "1")]
        pub text_segment: ::core::option::Option<super::TextSegment>,
        /// Page number of the [text_segment][google.cloud.automl.v1.Document.Layout.text_segment] in the original document, starts
        /// from 1.
        #[prost(int32, tag = "2")]
        pub page_number: i32,
        /// The position of the [text_segment][google.cloud.automl.v1.Document.Layout.text_segment] in the page.
        /// Contains exactly 4
        /// [normalized_vertices][google.cloud.automl.v1p1beta.BoundingPoly.normalized_vertices]
        /// and they are connected by edges in the order provided, which will
        /// represent a rectangle parallel to the frame. The
        /// [NormalizedVertex-s][google.cloud.automl.v1p1beta.NormalizedVertex] are
        /// relative to the page.
        /// Coordinates are based on top-left as point (0,0).
        #[prost(message, optional, tag = "3")]
        pub bounding_poly: ::core::option::Option<super::BoundingPoly>,
        /// The type of the [text_segment][google.cloud.automl.v1.Document.Layout.text_segment] in document.
        #[prost(enumeration = "layout::TextSegmentType", tag = "4")]
        pub text_segment_type: i32,
    }
    /// Nested message and enum types in `Layout`.
    pub mod layout {
        /// The type of TextSegment in the context of the original document.
        #[derive(
            Clone,
            Copy,
            Debug,
            PartialEq,
            Eq,
            Hash,
            PartialOrd,
            Ord,
            ::prost::Enumeration
        )]
        #[repr(i32)]
        pub enum TextSegmentType {
            /// Should not be used.
            Unspecified = 0,
            /// The text segment is a token. e.g. word.
            Token = 1,
            /// The text segment is a paragraph.
            Paragraph = 2,
            /// The text segment is a form field.
            FormField = 3,
            /// The text segment is the name part of a form field. It will be treated
            /// as child of another FORM_FIELD TextSegment if its span is subspan of
            /// another TextSegment with type FORM_FIELD.
            FormFieldName = 4,
            /// The text segment is the text content part of a form field. It will be
            /// treated as child of another FORM_FIELD TextSegment if its span is
            /// subspan of another TextSegment with type FORM_FIELD.
            FormFieldContents = 5,
            /// The text segment is a whole table, including headers, and all rows.
            Table = 6,
            /// The text segment is a table's headers. It will be treated as child of
            /// another TABLE TextSegment if its span is subspan of another TextSegment
            /// with type TABLE.
            TableHeader = 7,
            /// The text segment is a row in table. It will be treated as child of
            /// another TABLE TextSegment if its span is subspan of another TextSegment
            /// with type TABLE.
            TableRow = 8,
            /// The text segment is a cell in table. It will be treated as child of
            /// another TABLE_ROW TextSegment if its span is subspan of another
            /// TextSegment with type TABLE_ROW.
            TableCell = 9,
        }
        impl TextSegmentType {
            /// String value of the enum field names used in the ProtoBuf definition.
            ///
            /// The values are not transformed in any way and thus are considered stable
            /// (if the ProtoBuf definition does not change) and safe for programmatic use.
            pub fn as_str_name(&self) -> &'static str {
                match self {
                    TextSegmentType::Unspecified => "TEXT_SEGMENT_TYPE_UNSPECIFIED",
                    TextSegmentType::Token => "TOKEN",
                    TextSegmentType::Paragraph => "PARAGRAPH",
                    TextSegmentType::FormField => "FORM_FIELD",
                    TextSegmentType::FormFieldName => "FORM_FIELD_NAME",
                    TextSegmentType::FormFieldContents => "FORM_FIELD_CONTENTS",
                    TextSegmentType::Table => "TABLE",
                    TextSegmentType::TableHeader => "TABLE_HEADER",
                    TextSegmentType::TableRow => "TABLE_ROW",
                    TextSegmentType::TableCell => "TABLE_CELL",
                }
            }
            /// Creates an enum from field names used in the ProtoBuf definition.
            pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
                match value {
                    "TEXT_SEGMENT_TYPE_UNSPECIFIED" => Some(Self::Unspecified),
                    "TOKEN" => Some(Self::Token),
                    "PARAGRAPH" => Some(Self::Paragraph),
                    "FORM_FIELD" => Some(Self::FormField),
                    "FORM_FIELD_NAME" => Some(Self::FormFieldName),
                    "FORM_FIELD_CONTENTS" => Some(Self::FormFieldContents),
                    "TABLE" => Some(Self::Table),
                    "TABLE_HEADER" => Some(Self::TableHeader),
                    "TABLE_ROW" => Some(Self::TableRow),
                    "TABLE_CELL" => Some(Self::TableCell),
                    _ => None,
                }
            }
        }
    }
}
/// Example data used for training or prediction.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExamplePayload {
    /// Required. The example data.
    #[prost(oneof = "example_payload::Payload", tags = "1, 2, 4")]
    pub payload: ::core::option::Option<example_payload::Payload>,
}
/// Nested message and enum types in `ExamplePayload`.
pub mod example_payload {
    /// Required. The example data.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Payload {
        /// Example image.
        #[prost(message, tag = "1")]
        Image(super::Image),
        /// Example text.
        #[prost(message, tag = "2")]
        TextSnippet(super::TextSnippet),
        /// Example document.
        #[prost(message, tag = "4")]
        Document(super::Document),
    }
}
/// Dataset metadata that is specific to translation.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TranslationDatasetMetadata {
    /// Required. The BCP-47 language code of the source language.
    #[prost(string, tag = "1")]
    pub source_language_code: ::prost::alloc::string::String,
    /// Required. The BCP-47 language code of the target language.
    #[prost(string, tag = "2")]
    pub target_language_code: ::prost::alloc::string::String,
}
/// Evaluation metrics for the dataset.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TranslationEvaluationMetrics {
    /// Output only. BLEU score.
    #[prost(double, tag = "1")]
    pub bleu_score: f64,
    /// Output only. BLEU score for base model.
    #[prost(double, tag = "2")]
    pub base_bleu_score: f64,
}
/// Model metadata that is specific to translation.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TranslationModelMetadata {
    /// The resource name of the model to use as a baseline to train the custom
    /// model. If unset, we use the default base model provided by Google
    /// Translate. Format:
    /// `projects/{project_id}/locations/{location_id}/models/{model_id}`
    #[prost(string, tag = "1")]
    pub base_model: ::prost::alloc::string::String,
    /// Output only. Inferred from the dataset.
    /// The source language (The BCP-47 language code) that is used for training.
    #[prost(string, tag = "2")]
    pub source_language_code: ::prost::alloc::string::String,
    /// Output only. The target language (The BCP-47 language code) that is used
    /// for training.
    #[prost(string, tag = "3")]
    pub target_language_code: ::prost::alloc::string::String,
}
/// Annotation details specific to translation.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TranslationAnnotation {
    /// Output only . The translated content.
    #[prost(message, optional, tag = "1")]
    pub translated_content: ::core::option::Option<TextSnippet>,
}
/// Contains annotation details specific to classification.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct ClassificationAnnotation {
    /// Output only. A confidence estimate between 0.0 and 1.0. A higher value
    /// means greater confidence that the annotation is positive. If a user
    /// approves an annotation as negative or positive, the score value remains
    /// unchanged. If a user creates an annotation, the score is 0 for negative or
    /// 1 for positive.
    #[prost(float, tag = "1")]
    pub score: f32,
}
/// Model evaluation metrics for classification problems.
/// Note: For Video Classification this metrics only describe quality of the
/// Video Classification predictions of "segment_classification" type.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ClassificationEvaluationMetrics {
    /// Output only. The Area Under Precision-Recall Curve metric. Micro-averaged
    /// for the overall evaluation.
    #[prost(float, tag = "1")]
    pub au_prc: f32,
    /// Output only. The Area Under Receiver Operating Characteristic curve metric.
    /// Micro-averaged for the overall evaluation.
    #[prost(float, tag = "6")]
    pub au_roc: f32,
    /// Output only. The Log Loss metric.
    #[prost(float, tag = "7")]
    pub log_loss: f32,
    /// Output only. Metrics for each confidence_threshold in
    /// 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
    /// position_threshold = INT32_MAX_VALUE.
    /// ROC and precision-recall curves, and other aggregated metrics are derived
    /// from them. The confidence metrics entries may also be supplied for
    /// additional values of position_threshold, but from these no aggregated
    /// metrics are computed.
    #[prost(message, repeated, tag = "3")]
    pub confidence_metrics_entry: ::prost::alloc::vec::Vec<
        classification_evaluation_metrics::ConfidenceMetricsEntry,
    >,
    /// Output only. Confusion matrix of the evaluation.
    /// Only set for MULTICLASS classification problems where number
    /// of labels is no more than 10.
    /// Only set for model level evaluation, not for evaluation per label.
    #[prost(message, optional, tag = "4")]
    pub confusion_matrix: ::core::option::Option<
        classification_evaluation_metrics::ConfusionMatrix,
    >,
    /// Output only. The annotation spec ids used for this evaluation.
    #[prost(string, repeated, tag = "5")]
    pub annotation_spec_id: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
}
/// Nested message and enum types in `ClassificationEvaluationMetrics`.
pub mod classification_evaluation_metrics {
    /// Metrics for a single confidence threshold.
    #[derive(Clone, Copy, PartialEq, ::prost::Message)]
    pub struct ConfidenceMetricsEntry {
        /// Output only. Metrics are computed with an assumption that the model
        /// never returns predictions with score lower than this value.
        #[prost(float, tag = "1")]
        pub confidence_threshold: f32,
        /// Output only. Metrics are computed with an assumption that the model
        /// always returns at most this many predictions (ordered by their score,
        /// descendingly), but they all still need to meet the confidence_threshold.
        #[prost(int32, tag = "14")]
        pub position_threshold: i32,
        /// Output only. Recall (True Positive Rate) for the given confidence
        /// threshold.
        #[prost(float, tag = "2")]
        pub recall: f32,
        /// Output only. Precision for the given confidence threshold.
        #[prost(float, tag = "3")]
        pub precision: f32,
        /// Output only. False Positive Rate for the given confidence threshold.
        #[prost(float, tag = "8")]
        pub false_positive_rate: f32,
        /// Output only. The harmonic mean of recall and precision.
        #[prost(float, tag = "4")]
        pub f1_score: f32,
        /// Output only. The Recall (True Positive Rate) when only considering the
        /// label that has the highest prediction score and not below the confidence
        /// threshold for each example.
        #[prost(float, tag = "5")]
        pub recall_at1: f32,
        /// Output only. The precision when only considering the label that has the
        /// highest prediction score and not below the confidence threshold for each
        /// example.
        #[prost(float, tag = "6")]
        pub precision_at1: f32,
        /// Output only. The False Positive Rate when only considering the label that
        /// has the highest prediction score and not below the confidence threshold
        /// for each example.
        #[prost(float, tag = "9")]
        pub false_positive_rate_at1: f32,
        /// Output only. The harmonic mean of [recall_at1][google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1].
        #[prost(float, tag = "7")]
        pub f1_score_at1: f32,
        /// Output only. The number of model created labels that match a ground truth
        /// label.
        #[prost(int64, tag = "10")]
        pub true_positive_count: i64,
        /// Output only. The number of model created labels that do not match a
        /// ground truth label.
        #[prost(int64, tag = "11")]
        pub false_positive_count: i64,
        /// Output only. The number of ground truth labels that are not matched
        /// by a model created label.
        #[prost(int64, tag = "12")]
        pub false_negative_count: i64,
        /// Output only. The number of labels that were not created by the model,
        /// but if they would, they would not match a ground truth label.
        #[prost(int64, tag = "13")]
        pub true_negative_count: i64,
    }
    /// Confusion matrix of the model running the classification.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct ConfusionMatrix {
        /// Output only. IDs of the annotation specs used in the confusion matrix.
        /// For Tables CLASSIFICATION
        /// [prediction_type][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]
        /// only list of [annotation_spec_display_name-s][] is populated.
        #[prost(string, repeated, tag = "1")]
        pub annotation_spec_id: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
        /// Output only. Display name of the annotation specs used in the confusion
        /// matrix, as they were at the moment of the evaluation. For Tables
        /// CLASSIFICATION
        /// [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type],
        /// distinct values of the target column at the moment of the model
        /// evaluation are populated here.
        #[prost(string, repeated, tag = "3")]
        pub display_name: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
        /// Output only. Rows in the confusion matrix. The number of rows is equal to
        /// the size of `annotation_spec_id`.
        /// `row\[i\].example_count\[j\]` is the number of examples that have ground
        /// truth of the `annotation_spec_id\[i\]` and are predicted as
        /// `annotation_spec_id\[j\]` by the model being evaluated.
        #[prost(message, repeated, tag = "2")]
        pub row: ::prost::alloc::vec::Vec<confusion_matrix::Row>,
    }
    /// Nested message and enum types in `ConfusionMatrix`.
    pub mod confusion_matrix {
        /// Output only. A row in the confusion matrix.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct Row {
            /// Output only. Value of the specific cell in the confusion matrix.
            /// The number of values each row has (i.e. the length of the row) is equal
            /// to the length of the `annotation_spec_id` field or, if that one is not
            /// populated, length of the [display_name][google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
            #[prost(int32, repeated, tag = "1")]
            pub example_count: ::prost::alloc::vec::Vec<i32>,
        }
    }
}
/// Type of the classification problem.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
#[repr(i32)]
pub enum ClassificationType {
    /// An un-set value of this enum.
    Unspecified = 0,
    /// At most one label is allowed per example.
    Multiclass = 1,
    /// Multiple labels are allowed for one example.
    Multilabel = 2,
}
impl ClassificationType {
    /// String value of the enum field names used in the ProtoBuf definition.
    ///
    /// The values are not transformed in any way and thus are considered stable
    /// (if the ProtoBuf definition does not change) and safe for programmatic use.
    pub fn as_str_name(&self) -> &'static str {
        match self {
            ClassificationType::Unspecified => "CLASSIFICATION_TYPE_UNSPECIFIED",
            ClassificationType::Multiclass => "MULTICLASS",
            ClassificationType::Multilabel => "MULTILABEL",
        }
    }
    /// Creates an enum from field names used in the ProtoBuf definition.
    pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
        match value {
            "CLASSIFICATION_TYPE_UNSPECIFIED" => Some(Self::Unspecified),
            "MULTICLASS" => Some(Self::Multiclass),
            "MULTILABEL" => Some(Self::Multilabel),
            _ => None,
        }
    }
}
/// Dataset metadata that is specific to image classification.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct ImageClassificationDatasetMetadata {
    /// Required. Type of the classification problem.
    #[prost(enumeration = "ClassificationType", tag = "1")]
    pub classification_type: i32,
}
/// Dataset metadata specific to image object detection.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct ImageObjectDetectionDatasetMetadata {}
/// Model metadata for image classification.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ImageClassificationModelMetadata {
    /// Optional. The ID of the `base` model. If it is specified, the new model
    /// will be created based on the `base` model. Otherwise, the new model will be
    /// created from scratch. The `base` model must be in the same
    /// `project` and `location` as the new model to create, and have the same
    /// `model_type`.
    #[prost(string, tag = "1")]
    pub base_model_id: ::prost::alloc::string::String,
    /// Optional. The train budget of creating this model, expressed in milli node
    /// hours i.e. 1,000 value in this field means 1 node hour. The actual
    /// `train_cost` will be equal or less than this value. If further model
    /// training ceases to provide any improvements, it will stop without using
    /// full budget and the stop_reason will be `MODEL_CONVERGED`.
    /// Note, node_hour  = actual_hour * number_of_nodes_invovled.
    /// For model type `cloud`(default), the train budget must be between 8,000
    /// and 800,000 milli node hours, inclusive. The default value is 192, 000
    /// which represents one day in wall time. For model type
    /// `mobile-low-latency-1`, `mobile-versatile-1`, `mobile-high-accuracy-1`,
    /// `mobile-core-ml-low-latency-1`, `mobile-core-ml-versatile-1`,
    /// `mobile-core-ml-high-accuracy-1`, the train budget must be between 1,000
    /// and 100,000 milli node hours, inclusive. The default value is 24, 000 which
    /// represents one day in wall time.
    #[prost(int64, tag = "16")]
    pub train_budget_milli_node_hours: i64,
    /// Output only. The actual train cost of creating this model, expressed in
    /// milli node hours, i.e. 1,000 value in this field means 1 node hour.
    /// Guaranteed to not exceed the train budget.
    #[prost(int64, tag = "17")]
    pub train_cost_milli_node_hours: i64,
    /// Output only. The reason that this create model operation stopped,
    /// e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
    #[prost(string, tag = "5")]
    pub stop_reason: ::prost::alloc::string::String,
    /// Optional. Type of the model. The available values are:
    /// *   `cloud` - Model to be used via prediction calls to AutoML API.
    ///                This is the default value.
    /// *   `mobile-low-latency-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]) and used on a mobile or edge device
    ///                with TensorFlow afterwards. Expected to have low latency, but
    ///                may have lower prediction quality than other models.
    /// *   `mobile-versatile-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]) and used on a mobile or edge device
    ///                with TensorFlow afterwards.
    /// *   `mobile-high-accuracy-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]) and used on a mobile or edge device
    ///                with TensorFlow afterwards.  Expected to have a higher
    ///                latency, but should also have a higher prediction quality
    ///                than other models.
    /// *   `mobile-core-ml-low-latency-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]) and used on a mobile device with Core
    ///                ML afterwards. Expected to have low latency, but may have
    ///                lower prediction quality than other models.
    /// *   `mobile-core-ml-versatile-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]) and used on a mobile device with Core
    ///                ML afterwards.
    /// *   `mobile-core-ml-high-accuracy-1` - A model that, in addition to
    ///                providing prediction via AutoML API, can also be exported
    ///                (see [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]) and used on a mobile device with
    ///                Core ML afterwards.  Expected to have a higher latency, but
    ///                should also have a higher prediction quality than other
    ///                models.
    #[prost(string, tag = "7")]
    pub model_type: ::prost::alloc::string::String,
    /// Output only. An approximate number of online prediction QPS that can
    /// be supported by this model per each node on which it is deployed.
    #[prost(double, tag = "13")]
    pub node_qps: f64,
    /// Output only. The number of nodes this model is deployed on. A node is an
    /// abstraction of a machine resource, which can handle online prediction QPS
    /// as given in the node_qps field.
    #[prost(int64, tag = "14")]
    pub node_count: i64,
}
/// Model metadata specific to image object detection.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ImageObjectDetectionModelMetadata {
    /// Optional. Type of the model. The available values are:
    /// *   `cloud-high-accuracy-1` - (default) A model to be used via prediction
    ///                calls to AutoML API. Expected to have a higher latency, but
    ///                should also have a higher prediction quality than other
    ///                models.
    /// *   `cloud-low-latency-1` -  A model to be used via prediction
    ///                calls to AutoML API. Expected to have low latency, but may
    ///                have lower prediction quality than other models.
    /// *   `mobile-low-latency-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]) and used on a mobile or edge device
    ///                with TensorFlow afterwards. Expected to have low latency, but
    ///                may have lower prediction quality than other models.
    /// *   `mobile-versatile-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]) and used on a mobile or edge device
    ///                with TensorFlow afterwards.
    /// *   `mobile-high-accuracy-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]) and used on a mobile or edge device
    ///                with TensorFlow afterwards.  Expected to have a higher
    ///                latency, but should also have a higher prediction quality
    ///                than other models.
    #[prost(string, tag = "1")]
    pub model_type: ::prost::alloc::string::String,
    /// Output only. The number of nodes this model is deployed on. A node is an
    /// abstraction of a machine resource, which can handle online prediction QPS
    /// as given in the qps_per_node field.
    #[prost(int64, tag = "3")]
    pub node_count: i64,
    /// Output only. An approximate number of online prediction QPS that can
    /// be supported by this model per each node on which it is deployed.
    #[prost(double, tag = "4")]
    pub node_qps: f64,
    /// Output only. The reason that this create model operation stopped,
    /// e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
    #[prost(string, tag = "5")]
    pub stop_reason: ::prost::alloc::string::String,
    /// Optional. The train budget of creating this model, expressed in milli node
    /// hours i.e. 1,000 value in this field means 1 node hour. The actual
    /// `train_cost` will be equal or less than this value. If further model
    /// training ceases to provide any improvements, it will stop without using
    /// full budget and the stop_reason will be `MODEL_CONVERGED`.
    /// Note, node_hour  = actual_hour * number_of_nodes_invovled.
    /// For model type `cloud-high-accuracy-1`(default) and `cloud-low-latency-1`,
    /// the train budget must be between 20,000 and 900,000 milli node hours,
    /// inclusive. The default value is 216, 000 which represents one day in
    /// wall time.
    /// For model type `mobile-low-latency-1`, `mobile-versatile-1`,
    /// `mobile-high-accuracy-1`, `mobile-core-ml-low-latency-1`,
    /// `mobile-core-ml-versatile-1`, `mobile-core-ml-high-accuracy-1`, the train
    /// budget must be between 1,000 and 100,000 milli node hours, inclusive.
    /// The default value is 24, 000 which represents one day in wall time.
    #[prost(int64, tag = "6")]
    pub train_budget_milli_node_hours: i64,
    /// Output only. The actual train cost of creating this model, expressed in
    /// milli node hours, i.e. 1,000 value in this field means 1 node hour.
    /// Guaranteed to not exceed the train budget.
    #[prost(int64, tag = "7")]
    pub train_cost_milli_node_hours: i64,
}
/// Model deployment metadata specific to Image Classification.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct ImageClassificationModelDeploymentMetadata {
    /// Input only. The number of nodes to deploy the model on. A node is an
    /// abstraction of a machine resource, which can handle online prediction QPS
    /// as given in the model's
    /// [node_qps][google.cloud.automl.v1.ImageClassificationModelMetadata.node_qps].
    /// Must be between 1 and 100, inclusive on both ends.
    #[prost(int64, tag = "1")]
    pub node_count: i64,
}
/// Model deployment metadata specific to Image Object Detection.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct ImageObjectDetectionModelDeploymentMetadata {
    /// Input only. The number of nodes to deploy the model on. A node is an
    /// abstraction of a machine resource, which can handle online prediction QPS
    /// as given in the model's
    /// [qps_per_node][google.cloud.automl.v1.ImageObjectDetectionModelMetadata.qps_per_node].
    /// Must be between 1 and 100, inclusive on both ends.
    #[prost(int64, tag = "1")]
    pub node_count: i64,
}
/// Dataset metadata for classification.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TextClassificationDatasetMetadata {
    /// Required. Type of the classification problem.
    #[prost(enumeration = "ClassificationType", tag = "1")]
    pub classification_type: i32,
}
/// Model metadata that is specific to text classification.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TextClassificationModelMetadata {
    /// Output only. Classification type of the dataset used to train this model.
    #[prost(enumeration = "ClassificationType", tag = "3")]
    pub classification_type: i32,
}
/// Dataset metadata that is specific to text extraction
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TextExtractionDatasetMetadata {}
/// Model metadata that is specific to text extraction.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TextExtractionModelMetadata {}
/// Dataset metadata for text sentiment.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TextSentimentDatasetMetadata {
    /// Required. A sentiment is expressed as an integer ordinal, where higher value
    /// means a more positive sentiment. The range of sentiments that will be used
    /// is between 0 and sentiment_max (inclusive on both ends), and all the values
    /// in the range must be represented in the dataset before a model can be
    /// created.
    /// sentiment_max value must be between 1 and 10 (inclusive).
    #[prost(int32, tag = "1")]
    pub sentiment_max: i32,
}
/// Model metadata that is specific to text sentiment.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TextSentimentModelMetadata {}
/// API proto representing a trained machine learning model.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Model {
    /// Output only. Resource name of the model.
    /// Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The name of the model to show in the interface. The name can be
    /// up to 32 characters long and can consist only of ASCII Latin letters A-Z
    /// and a-z, underscores
    /// (_), and ASCII digits 0-9. It must start with a letter.
    #[prost(string, tag = "2")]
    pub display_name: ::prost::alloc::string::String,
    /// Required. The resource ID of the dataset used to create the model. The dataset must
    /// come from the same ancestor project and location.
    #[prost(string, tag = "3")]
    pub dataset_id: ::prost::alloc::string::String,
    /// Output only. Timestamp when the model training finished  and can be used for prediction.
    #[prost(message, optional, tag = "7")]
    pub create_time: ::core::option::Option<::prost_types::Timestamp>,
    /// Output only. Timestamp when this model was last updated.
    #[prost(message, optional, tag = "11")]
    pub update_time: ::core::option::Option<::prost_types::Timestamp>,
    /// Output only. Deployment state of the model. A model can only serve
    /// prediction requests after it gets deployed.
    #[prost(enumeration = "model::DeploymentState", tag = "8")]
    pub deployment_state: i32,
    /// Used to perform a consistent read-modify-write updates. If not set, a blind
    /// "overwrite" update happens.
    #[prost(string, tag = "10")]
    pub etag: ::prost::alloc::string::String,
    /// Optional. The labels with user-defined metadata to organize your model.
    ///
    /// Label keys and values can be no longer than 64 characters
    /// (Unicode codepoints), can only contain lowercase letters, numeric
    /// characters, underscores and dashes. International characters are allowed.
    /// Label values are optional. Label keys must start with a letter.
    ///
    /// See <https://goo.gl/xmQnxf> for more information on and examples of labels.
    #[prost(btree_map = "string, string", tag = "34")]
    pub labels: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
    /// Required.
    /// The model metadata that is specific to the problem type.
    /// Must match the metadata type of the dataset used to train the model.
    #[prost(oneof = "model::ModelMetadata", tags = "15, 13, 14, 20, 19, 22")]
    pub model_metadata: ::core::option::Option<model::ModelMetadata>,
}
/// Nested message and enum types in `Model`.
pub mod model {
    /// Deployment state of the model.
    #[derive(
        Clone,
        Copy,
        Debug,
        PartialEq,
        Eq,
        Hash,
        PartialOrd,
        Ord,
        ::prost::Enumeration
    )]
    #[repr(i32)]
    pub enum DeploymentState {
        /// Should not be used, an un-set enum has this value by default.
        Unspecified = 0,
        /// Model is deployed.
        Deployed = 1,
        /// Model is not deployed.
        Undeployed = 2,
    }
    impl DeploymentState {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                DeploymentState::Unspecified => "DEPLOYMENT_STATE_UNSPECIFIED",
                DeploymentState::Deployed => "DEPLOYED",
                DeploymentState::Undeployed => "UNDEPLOYED",
            }
        }
        /// Creates an enum from field names used in the ProtoBuf definition.
        pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
            match value {
                "DEPLOYMENT_STATE_UNSPECIFIED" => Some(Self::Unspecified),
                "DEPLOYED" => Some(Self::Deployed),
                "UNDEPLOYED" => Some(Self::Undeployed),
                _ => None,
            }
        }
    }
    /// Required.
    /// The model metadata that is specific to the problem type.
    /// Must match the metadata type of the dataset used to train the model.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum ModelMetadata {
        /// Metadata for translation models.
        #[prost(message, tag = "15")]
        TranslationModelMetadata(super::TranslationModelMetadata),
        /// Metadata for image classification models.
        #[prost(message, tag = "13")]
        ImageClassificationModelMetadata(super::ImageClassificationModelMetadata),
        /// Metadata for text classification models.
        #[prost(message, tag = "14")]
        TextClassificationModelMetadata(super::TextClassificationModelMetadata),
        /// Metadata for image object detection models.
        #[prost(message, tag = "20")]
        ImageObjectDetectionModelMetadata(super::ImageObjectDetectionModelMetadata),
        /// Metadata for text extraction models.
        #[prost(message, tag = "19")]
        TextExtractionModelMetadata(super::TextExtractionModelMetadata),
        /// Metadata for text sentiment models.
        #[prost(message, tag = "22")]
        TextSentimentModelMetadata(super::TextSentimentModelMetadata),
    }
}
/// Annotation for identifying spans of text.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TextExtractionAnnotation {
    /// Output only. A confidence estimate between 0.0 and 1.0. A higher value
    /// means greater confidence in correctness of the annotation.
    #[prost(float, tag = "1")]
    pub score: f32,
    /// Required. Text extraction annotations can either be a text segment or a
    /// text relation.
    #[prost(oneof = "text_extraction_annotation::Annotation", tags = "3")]
    pub annotation: ::core::option::Option<text_extraction_annotation::Annotation>,
}
/// Nested message and enum types in `TextExtractionAnnotation`.
pub mod text_extraction_annotation {
    /// Required. Text extraction annotations can either be a text segment or a
    /// text relation.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Annotation {
        /// An entity annotation will set this, which is the part of the original
        /// text to which the annotation pertains.
        #[prost(message, tag = "3")]
        TextSegment(super::TextSegment),
    }
}
/// Model evaluation metrics for text extraction problems.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TextExtractionEvaluationMetrics {
    /// Output only. The Area under precision recall curve metric.
    #[prost(float, tag = "1")]
    pub au_prc: f32,
    /// Output only. Metrics that have confidence thresholds.
    /// Precision-recall curve can be derived from it.
    #[prost(message, repeated, tag = "2")]
    pub confidence_metrics_entries: ::prost::alloc::vec::Vec<
        text_extraction_evaluation_metrics::ConfidenceMetricsEntry,
    >,
}
/// Nested message and enum types in `TextExtractionEvaluationMetrics`.
pub mod text_extraction_evaluation_metrics {
    /// Metrics for a single confidence threshold.
    #[derive(Clone, Copy, PartialEq, ::prost::Message)]
    pub struct ConfidenceMetricsEntry {
        /// Output only. The confidence threshold value used to compute the metrics.
        /// Only annotations with score of at least this threshold are considered to
        /// be ones the model would return.
        #[prost(float, tag = "1")]
        pub confidence_threshold: f32,
        /// Output only. Recall under the given confidence threshold.
        #[prost(float, tag = "3")]
        pub recall: f32,
        /// Output only. Precision under the given confidence threshold.
        #[prost(float, tag = "4")]
        pub precision: f32,
        /// Output only. The harmonic mean of recall and precision.
        #[prost(float, tag = "5")]
        pub f1_score: f32,
    }
}
/// Contains annotation details specific to text sentiment.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TextSentimentAnnotation {
    /// Output only. The sentiment with the semantic, as given to the
    /// [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData] when populating the dataset from which the model used
    /// for the prediction had been trained.
    /// The sentiment values are between 0 and
    /// Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive),
    /// with higher value meaning more positive sentiment. They are completely
    /// relative, i.e. 0 means least positive sentiment and sentiment_max means
    /// the most positive from the sentiments present in the train data. Therefore
    ///   e.g. if train data had only negative sentiment, then sentiment_max, would
    /// be still negative (although least negative).
    /// The sentiment shouldn't be confused with "score" or "magnitude"
    /// from the previous Natural Language Sentiment Analysis API.
    #[prost(int32, tag = "1")]
    pub sentiment: i32,
}
/// Model evaluation metrics for text sentiment problems.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TextSentimentEvaluationMetrics {
    /// Output only. Precision.
    #[prost(float, tag = "1")]
    pub precision: f32,
    /// Output only. Recall.
    #[prost(float, tag = "2")]
    pub recall: f32,
    /// Output only. The harmonic mean of recall and precision.
    #[prost(float, tag = "3")]
    pub f1_score: f32,
    /// Output only. Mean absolute error. Only set for the overall model
    /// evaluation, not for evaluation of a single annotation spec.
    #[prost(float, tag = "4")]
    pub mean_absolute_error: f32,
    /// Output only. Mean squared error. Only set for the overall model
    /// evaluation, not for evaluation of a single annotation spec.
    #[prost(float, tag = "5")]
    pub mean_squared_error: f32,
    /// Output only. Linear weighted kappa. Only set for the overall model
    /// evaluation, not for evaluation of a single annotation spec.
    #[prost(float, tag = "6")]
    pub linear_kappa: f32,
    /// Output only. Quadratic weighted kappa. Only set for the overall model
    /// evaluation, not for evaluation of a single annotation spec.
    #[prost(float, tag = "7")]
    pub quadratic_kappa: f32,
    /// Output only. Confusion matrix of the evaluation.
    /// Only set for the overall model evaluation, not for evaluation of a single
    /// annotation spec.
    #[prost(message, optional, tag = "8")]
    pub confusion_matrix: ::core::option::Option<
        classification_evaluation_metrics::ConfusionMatrix,
    >,
}
/// Contains annotation information that is relevant to AutoML.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AnnotationPayload {
    /// Output only . The resource ID of the annotation spec that
    /// this annotation pertains to. The annotation spec comes from either an
    /// ancestor dataset, or the dataset that was used to train the model in use.
    #[prost(string, tag = "1")]
    pub annotation_spec_id: ::prost::alloc::string::String,
    /// Output only. The value of
    /// [display_name][google.cloud.automl.v1.AnnotationSpec.display_name]
    /// when the model was trained. Because this field returns a value at model
    /// training time, for different models trained using the same dataset, the
    /// returned value could be different as model owner could update the
    /// `display_name` between any two model training.
    #[prost(string, tag = "5")]
    pub display_name: ::prost::alloc::string::String,
    /// Output only . Additional information about the annotation
    /// specific to the AutoML domain.
    #[prost(oneof = "annotation_payload::Detail", tags = "2, 3, 4, 6, 7")]
    pub detail: ::core::option::Option<annotation_payload::Detail>,
}
/// Nested message and enum types in `AnnotationPayload`.
pub mod annotation_payload {
    /// Output only . Additional information about the annotation
    /// specific to the AutoML domain.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Detail {
        /// Annotation details for translation.
        #[prost(message, tag = "2")]
        Translation(super::TranslationAnnotation),
        /// Annotation details for content or image classification.
        #[prost(message, tag = "3")]
        Classification(super::ClassificationAnnotation),
        /// Annotation details for image object detection.
        #[prost(message, tag = "4")]
        ImageObjectDetection(super::ImageObjectDetectionAnnotation),
        /// Annotation details for text extraction.
        #[prost(message, tag = "6")]
        TextExtraction(super::TextExtractionAnnotation),
        /// Annotation details for text sentiment.
        #[prost(message, tag = "7")]
        TextSentiment(super::TextSentimentAnnotation),
    }
}
/// Request message for [PredictionService.Predict][google.cloud.automl.v1.PredictionService.Predict].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct PredictRequest {
    /// Required. Name of the model requested to serve the prediction.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. Payload to perform a prediction on. The payload must match the
    /// problem type that the model was trained to solve.
    #[prost(message, optional, tag = "2")]
    pub payload: ::core::option::Option<ExamplePayload>,
    /// Additional domain-specific parameters, any string must be up to 25000
    /// characters long.
    ///
    /// AutoML Vision Classification
    ///
    /// `score_threshold`
    /// : (float) A value from 0.0 to 1.0. When the model
    ///    makes predictions for an image, it will only produce results that have
    ///    at least this confidence score. The default is 0.5.
    ///
    /// AutoML Vision Object Detection
    ///
    /// `score_threshold`
    /// : (float) When Model detects objects on the image,
    ///    it will only produce bounding boxes which have at least this
    ///    confidence score. Value in 0 to 1 range, default is 0.5.
    ///
    /// `max_bounding_box_count`
    /// : (int64) The maximum number of bounding
    ///    boxes returned. The default is 100. The
    ///    number of returned bounding boxes might be limited by the server.
    ///
    /// AutoML Tables
    ///
    /// `feature_importance`
    /// : (boolean) Whether
    /// [feature_importance][google.cloud.automl.v1.TablesModelColumnInfo.feature_importance]
    ///    is populated in the returned list of
    ///    [TablesAnnotation][google.cloud.automl.v1.TablesAnnotation]
    ///    objects. The default is false.
    #[prost(btree_map = "string, string", tag = "3")]
    pub params: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
}
/// Response message for [PredictionService.Predict][google.cloud.automl.v1.PredictionService.Predict].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct PredictResponse {
    /// Prediction result.
    /// AutoML Translation and AutoML Natural Language Sentiment Analysis
    /// return precisely one payload.
    #[prost(message, repeated, tag = "1")]
    pub payload: ::prost::alloc::vec::Vec<AnnotationPayload>,
    /// The preprocessed example that AutoML actually makes prediction on.
    /// Empty if AutoML does not preprocess the input example.
    ///
    /// For AutoML Natural Language (Classification, Entity Extraction, and
    /// Sentiment Analysis), if the input is a document, the recognized text is
    /// returned in the
    /// [document_text][google.cloud.automl.v1.Document.document_text]
    /// property.
    #[prost(message, optional, tag = "3")]
    pub preprocessed_input: ::core::option::Option<ExamplePayload>,
    /// Additional domain-specific prediction response metadata.
    ///
    /// AutoML Vision Object Detection
    ///
    /// `max_bounding_box_count`
    /// : (int64) The maximum number of bounding boxes to return per image.
    ///
    /// AutoML Natural Language Sentiment Analysis
    ///
    /// `sentiment_score`
    /// : (float, deprecated) A value between -1 and 1,
    ///    -1 maps to least positive sentiment, while 1 maps to the most positive
    ///    one and the higher the score, the more positive the sentiment in the
    ///    document is. Yet these values are relative to the training data, so
    ///    e.g. if all data was positive then -1 is also positive (though
    ///    the least).
    ///    `sentiment_score` is not the same as "score" and "magnitude"
    ///    from Sentiment Analysis in the Natural Language API.
    #[prost(btree_map = "string, string", tag = "2")]
    pub metadata: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
}
/// Request message for [PredictionService.BatchPredict][google.cloud.automl.v1.PredictionService.BatchPredict].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BatchPredictRequest {
    /// Required. Name of the model requested to serve the batch prediction.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The input configuration for batch prediction.
    #[prost(message, optional, tag = "3")]
    pub input_config: ::core::option::Option<BatchPredictInputConfig>,
    /// Required. The Configuration specifying where output predictions should
    /// be written.
    #[prost(message, optional, tag = "4")]
    pub output_config: ::core::option::Option<BatchPredictOutputConfig>,
    /// Additional domain-specific parameters for the predictions, any string must
    /// be up to 25000 characters long.
    ///
    /// AutoML Natural Language Classification
    ///
    /// `score_threshold`
    /// : (float) A value from 0.0 to 1.0. When the model
    ///    makes predictions for a text snippet, it will only produce results
    ///    that have at least this confidence score. The default is 0.5.
    ///
    ///
    /// AutoML Vision Classification
    ///
    /// `score_threshold`
    /// : (float) A value from 0.0 to 1.0. When the model
    ///    makes predictions for an image, it will only produce results that
    ///    have at least this confidence score. The default is 0.5.
    ///
    /// AutoML Vision Object Detection
    ///
    /// `score_threshold`
    /// : (float) When Model detects objects on the image,
    ///    it will only produce bounding boxes which have at least this
    ///    confidence score. Value in 0 to 1 range, default is 0.5.
    ///
    /// `max_bounding_box_count`
    /// : (int64) The maximum number of bounding
    ///    boxes returned per image. The default is 100, the
    ///    number of bounding boxes returned might be limited by the server.
    /// AutoML Video Intelligence Classification
    ///
    /// `score_threshold`
    /// : (float) A value from 0.0 to 1.0. When the model
    ///    makes predictions for a video, it will only produce results that
    ///    have at least this confidence score. The default is 0.5.
    ///
    /// `segment_classification`
    /// : (boolean) Set to true to request
    ///    segment-level classification. AutoML Video Intelligence returns
    ///    labels and their confidence scores for the entire segment of the
    ///    video that user specified in the request configuration.
    ///    The default is true.
    ///
    /// `shot_classification`
    /// : (boolean) Set to true to request shot-level
    ///    classification. AutoML Video Intelligence determines the boundaries
    ///    for each camera shot in the entire segment of the video that user
    ///    specified in the request configuration. AutoML Video Intelligence
    ///    then returns labels and their confidence scores for each detected
    ///    shot, along with the start and end time of the shot.
    ///    The default is false.
    ///
    ///    WARNING: Model evaluation is not done for this classification type,
    ///    the quality of it depends on training data, but there are no metrics
    ///    provided to describe that quality.
    ///
    /// `1s_interval_classification`
    /// : (boolean) Set to true to request
    ///    classification for a video at one-second intervals. AutoML Video
    ///    Intelligence returns labels and their confidence scores for each
    ///    second of the entire segment of the video that user specified in the
    ///    request configuration. The default is false.
    ///
    ///    WARNING: Model evaluation is not done for this classification
    ///    type, the quality of it depends on training data, but there are no
    ///    metrics provided to describe that quality.
    ///
    /// AutoML Video Intelligence Object Tracking
    ///
    /// `score_threshold`
    /// : (float) When Model detects objects on video frames,
    ///    it will only produce bounding boxes which have at least this
    ///    confidence score. Value in 0 to 1 range, default is 0.5.
    ///
    /// `max_bounding_box_count`
    /// : (int64) The maximum number of bounding
    ///    boxes returned per image. The default is 100, the
    ///    number of bounding boxes returned might be limited by the server.
    ///
    /// `min_bounding_box_size`
    /// : (float) Only bounding boxes with shortest edge
    ///    at least that long as a relative value of video frame size are
    ///    returned. Value in 0 to 1 range. Default is 0.
    ///
    #[prost(btree_map = "string, string", tag = "5")]
    pub params: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
}
/// Result of the Batch Predict. This message is returned in
/// [response][google.longrunning.Operation.response] of the operation returned
/// by the [PredictionService.BatchPredict][google.cloud.automl.v1.PredictionService.BatchPredict].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BatchPredictResult {
    /// Additional domain-specific prediction response metadata.
    ///
    /// AutoML Vision Object Detection
    ///
    /// `max_bounding_box_count`
    /// : (int64) The maximum number of bounding boxes returned per image.
    ///
    /// AutoML Video Intelligence Object Tracking
    ///
    /// `max_bounding_box_count`
    /// : (int64) The maximum number of bounding boxes returned per frame.
    #[prost(btree_map = "string, string", tag = "1")]
    pub metadata: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
}
/// Generated client implementations.
pub mod prediction_service_client {
    #![allow(unused_variables, dead_code, missing_docs, clippy::let_unit_value)]
    use tonic::codegen::*;
    use tonic::codegen::http::Uri;
    /// AutoML Prediction API.
    ///
    /// On any input that is documented to expect a string parameter in
    /// snake_case or dash-case, either of those cases is accepted.
    #[derive(Debug, Clone)]
    pub struct PredictionServiceClient<T> {
        inner: tonic::client::Grpc<T>,
    }
    impl<T> PredictionServiceClient<T>
    where
        T: tonic::client::GrpcService<tonic::body::BoxBody>,
        T::Error: Into<StdError>,
        T::ResponseBody: Body<Data = Bytes> + std::marker::Send + 'static,
        <T::ResponseBody as Body>::Error: Into<StdError> + std::marker::Send,
    {
        pub fn new(inner: T) -> Self {
            let inner = tonic::client::Grpc::new(inner);
            Self { inner }
        }
        pub fn with_origin(inner: T, origin: Uri) -> Self {
            let inner = tonic::client::Grpc::with_origin(inner, origin);
            Self { inner }
        }
        pub fn with_interceptor<F>(
            inner: T,
            interceptor: F,
        ) -> PredictionServiceClient<InterceptedService<T, F>>
        where
            F: tonic::service::Interceptor,
            T::ResponseBody: Default,
            T: tonic::codegen::Service<
                http::Request<tonic::body::BoxBody>,
                Response = http::Response<
                    <T as tonic::client::GrpcService<tonic::body::BoxBody>>::ResponseBody,
                >,
            >,
            <T as tonic::codegen::Service<
                http::Request<tonic::body::BoxBody>,
            >>::Error: Into<StdError> + std::marker::Send + std::marker::Sync,
        {
            PredictionServiceClient::new(InterceptedService::new(inner, interceptor))
        }
        /// Compress requests with the given encoding.
        ///
        /// This requires the server to support it otherwise it might respond with an
        /// error.
        #[must_use]
        pub fn send_compressed(mut self, encoding: CompressionEncoding) -> Self {
            self.inner = self.inner.send_compressed(encoding);
            self
        }
        /// Enable decompressing responses.
        #[must_use]
        pub fn accept_compressed(mut self, encoding: CompressionEncoding) -> Self {
            self.inner = self.inner.accept_compressed(encoding);
            self
        }
        /// Limits the maximum size of a decoded message.
        ///
        /// Default: `4MB`
        #[must_use]
        pub fn max_decoding_message_size(mut self, limit: usize) -> Self {
            self.inner = self.inner.max_decoding_message_size(limit);
            self
        }
        /// Limits the maximum size of an encoded message.
        ///
        /// Default: `usize::MAX`
        #[must_use]
        pub fn max_encoding_message_size(mut self, limit: usize) -> Self {
            self.inner = self.inner.max_encoding_message_size(limit);
            self
        }
        /// Perform an online prediction. The prediction result is directly
        /// returned in the response.
        /// Available for following ML scenarios, and their expected request payloads:
        ///
        /// AutoML Vision Classification
        ///
        /// * An image in .JPEG, .GIF or .PNG format, image_bytes up to 30MB.
        ///
        /// AutoML Vision Object Detection
        ///
        /// * An image in .JPEG, .GIF or .PNG format, image_bytes up to 30MB.
        ///
        /// AutoML Natural Language Classification
        ///
        /// * A TextSnippet up to 60,000 characters, UTF-8 encoded or a document in
        /// .PDF, .TIF or .TIFF format with size upto 2MB.
        ///
        /// AutoML Natural Language Entity Extraction
        ///
        /// * A TextSnippet up to 10,000 characters, UTF-8 NFC encoded or a document
        ///  in .PDF, .TIF or .TIFF format with size upto 20MB.
        ///
        /// AutoML Natural Language Sentiment Analysis
        ///
        /// * A TextSnippet up to 60,000 characters, UTF-8 encoded or a document in
        /// .PDF, .TIF or .TIFF format with size upto 2MB.
        ///
        /// AutoML Translation
        ///
        /// * A TextSnippet up to 25,000 characters, UTF-8 encoded.
        ///
        /// AutoML Tables
        ///
        /// * A row with column values matching
        ///   the columns of the model, up to 5MB. Not available for FORECASTING
        ///   `prediction_type`.
        pub async fn predict(
            &mut self,
            request: impl tonic::IntoRequest<super::PredictRequest>,
        ) -> std::result::Result<
            tonic::Response<super::PredictResponse>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.PredictionService/Predict",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1.PredictionService",
                        "Predict",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Perform a batch prediction. Unlike the online [Predict][google.cloud.automl.v1.PredictionService.Predict], batch
        /// prediction result won't be immediately available in the response. Instead,
        /// a long running operation object is returned. User can poll the operation
        /// result via [GetOperation][google.longrunning.Operations.GetOperation]
        /// method. Once the operation is done, [BatchPredictResult][google.cloud.automl.v1.BatchPredictResult] is returned in
        /// the [response][google.longrunning.Operation.response] field.
        /// Available for following ML scenarios:
        ///
        /// * AutoML Vision Classification
        /// * AutoML Vision Object Detection
        /// * AutoML Video Intelligence Classification
        /// * AutoML Video Intelligence Object Tracking * AutoML Natural Language Classification
        /// * AutoML Natural Language Entity Extraction
        /// * AutoML Natural Language Sentiment Analysis
        /// * AutoML Tables
        pub async fn batch_predict(
            &mut self,
            request: impl tonic::IntoRequest<super::BatchPredictRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.PredictionService/BatchPredict",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1.PredictionService",
                        "BatchPredict",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
    }
}
/// A workspace for solving a single, particular machine learning (ML) problem.
/// A workspace contains examples that may be annotated.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Dataset {
    /// Output only. The resource name of the dataset.
    /// Form: `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The name of the dataset to show in the interface. The name can be
    /// up to 32 characters long and can consist only of ASCII Latin letters A-Z
    /// and a-z, underscores
    /// (_), and ASCII digits 0-9.
    #[prost(string, tag = "2")]
    pub display_name: ::prost::alloc::string::String,
    /// User-provided description of the dataset. The description can be up to
    /// 25000 characters long.
    #[prost(string, tag = "3")]
    pub description: ::prost::alloc::string::String,
    /// Output only. The number of examples in the dataset.
    #[prost(int32, tag = "21")]
    pub example_count: i32,
    /// Output only. Timestamp when this dataset was created.
    #[prost(message, optional, tag = "14")]
    pub create_time: ::core::option::Option<::prost_types::Timestamp>,
    /// Used to perform consistent read-modify-write updates. If not set, a blind
    /// "overwrite" update happens.
    #[prost(string, tag = "17")]
    pub etag: ::prost::alloc::string::String,
    /// Optional. The labels with user-defined metadata to organize your dataset.
    ///
    /// Label keys and values can be no longer than 64 characters
    /// (Unicode codepoints), can only contain lowercase letters, numeric
    /// characters, underscores and dashes. International characters are allowed.
    /// Label values are optional. Label keys must start with a letter.
    ///
    /// See <https://goo.gl/xmQnxf> for more information on and examples of labels.
    #[prost(btree_map = "string, string", tag = "39")]
    pub labels: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
    /// Required.
    /// The dataset metadata that is specific to the problem type.
    #[prost(oneof = "dataset::DatasetMetadata", tags = "23, 24, 25, 26, 28, 30")]
    pub dataset_metadata: ::core::option::Option<dataset::DatasetMetadata>,
}
/// Nested message and enum types in `Dataset`.
pub mod dataset {
    /// Required.
    /// The dataset metadata that is specific to the problem type.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum DatasetMetadata {
        /// Metadata for a dataset used for translation.
        #[prost(message, tag = "23")]
        TranslationDatasetMetadata(super::TranslationDatasetMetadata),
        /// Metadata for a dataset used for image classification.
        #[prost(message, tag = "24")]
        ImageClassificationDatasetMetadata(super::ImageClassificationDatasetMetadata),
        /// Metadata for a dataset used for text classification.
        #[prost(message, tag = "25")]
        TextClassificationDatasetMetadata(super::TextClassificationDatasetMetadata),
        /// Metadata for a dataset used for image object detection.
        #[prost(message, tag = "26")]
        ImageObjectDetectionDatasetMetadata(super::ImageObjectDetectionDatasetMetadata),
        /// Metadata for a dataset used for text extraction.
        #[prost(message, tag = "28")]
        TextExtractionDatasetMetadata(super::TextExtractionDatasetMetadata),
        /// Metadata for a dataset used for text sentiment.
        #[prost(message, tag = "30")]
        TextSentimentDatasetMetadata(super::TextSentimentDatasetMetadata),
    }
}
/// A definition of an annotation spec.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AnnotationSpec {
    /// Output only. Resource name of the annotation spec.
    /// Form:
    /// 'projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/annotationSpecs/{annotation_spec_id}'
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The name of the annotation spec to show in the interface. The name can be
    /// up to 32 characters long and must match the regexp `\[a-zA-Z0-9_\]+`.
    #[prost(string, tag = "2")]
    pub display_name: ::prost::alloc::string::String,
    /// Output only. The number of examples in the parent dataset
    /// labeled by the annotation spec.
    #[prost(int32, tag = "9")]
    pub example_count: i32,
}
/// Metadata used across all long running operations returned by AutoML API.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct OperationMetadata {
    /// Output only. Progress of operation. Range: \[0, 100\].
    /// Not used currently.
    #[prost(int32, tag = "13")]
    pub progress_percent: i32,
    /// Output only. Partial failures encountered.
    /// E.g. single files that couldn't be read.
    /// This field should never exceed 20 entries.
    /// Status details field will contain standard GCP error details.
    #[prost(message, repeated, tag = "2")]
    pub partial_failures: ::prost::alloc::vec::Vec<super::super::super::rpc::Status>,
    /// Output only. Time when the operation was created.
    #[prost(message, optional, tag = "3")]
    pub create_time: ::core::option::Option<::prost_types::Timestamp>,
    /// Output only. Time when the operation was updated for the last time.
    #[prost(message, optional, tag = "4")]
    pub update_time: ::core::option::Option<::prost_types::Timestamp>,
    /// Ouptut only. Details of specific operation. Even if this field is empty,
    /// the presence allows to distinguish different types of operations.
    #[prost(
        oneof = "operation_metadata::Details",
        tags = "8, 24, 25, 10, 30, 15, 16, 21, 22"
    )]
    pub details: ::core::option::Option<operation_metadata::Details>,
}
/// Nested message and enum types in `OperationMetadata`.
pub mod operation_metadata {
    /// Ouptut only. Details of specific operation. Even if this field is empty,
    /// the presence allows to distinguish different types of operations.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Details {
        /// Details of a Delete operation.
        #[prost(message, tag = "8")]
        DeleteDetails(super::DeleteOperationMetadata),
        /// Details of a DeployModel operation.
        #[prost(message, tag = "24")]
        DeployModelDetails(super::DeployModelOperationMetadata),
        /// Details of an UndeployModel operation.
        #[prost(message, tag = "25")]
        UndeployModelDetails(super::UndeployModelOperationMetadata),
        /// Details of CreateModel operation.
        #[prost(message, tag = "10")]
        CreateModelDetails(super::CreateModelOperationMetadata),
        /// Details of CreateDataset operation.
        #[prost(message, tag = "30")]
        CreateDatasetDetails(super::CreateDatasetOperationMetadata),
        /// Details of ImportData operation.
        #[prost(message, tag = "15")]
        ImportDataDetails(super::ImportDataOperationMetadata),
        /// Details of BatchPredict operation.
        #[prost(message, tag = "16")]
        BatchPredictDetails(super::BatchPredictOperationMetadata),
        /// Details of ExportData operation.
        #[prost(message, tag = "21")]
        ExportDataDetails(super::ExportDataOperationMetadata),
        /// Details of ExportModel operation.
        #[prost(message, tag = "22")]
        ExportModelDetails(super::ExportModelOperationMetadata),
    }
}
/// Details of operations that perform deletes of any entities.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct DeleteOperationMetadata {}
/// Details of DeployModel operation.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct DeployModelOperationMetadata {}
/// Details of UndeployModel operation.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct UndeployModelOperationMetadata {}
/// Details of CreateDataset operation.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct CreateDatasetOperationMetadata {}
/// Details of CreateModel operation.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct CreateModelOperationMetadata {}
/// Details of ImportData operation.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct ImportDataOperationMetadata {}
/// Details of ExportData operation.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExportDataOperationMetadata {
    /// Output only. Information further describing this export data's output.
    #[prost(message, optional, tag = "1")]
    pub output_info: ::core::option::Option<
        export_data_operation_metadata::ExportDataOutputInfo,
    >,
}
/// Nested message and enum types in `ExportDataOperationMetadata`.
pub mod export_data_operation_metadata {
    /// Further describes this export data's output.
    /// Supplements
    /// [OutputConfig][google.cloud.automl.v1.OutputConfig].
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct ExportDataOutputInfo {
        /// The output location to which the exported data is written.
        #[prost(oneof = "export_data_output_info::OutputLocation", tags = "1")]
        pub output_location: ::core::option::Option<
            export_data_output_info::OutputLocation,
        >,
    }
    /// Nested message and enum types in `ExportDataOutputInfo`.
    pub mod export_data_output_info {
        /// The output location to which the exported data is written.
        #[derive(Clone, PartialEq, ::prost::Oneof)]
        pub enum OutputLocation {
            /// The full path of the Google Cloud Storage directory created, into which
            /// the exported data is written.
            #[prost(string, tag = "1")]
            GcsOutputDirectory(::prost::alloc::string::String),
        }
    }
}
/// Details of BatchPredict operation.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BatchPredictOperationMetadata {
    /// Output only. The input config that was given upon starting this
    /// batch predict operation.
    #[prost(message, optional, tag = "1")]
    pub input_config: ::core::option::Option<BatchPredictInputConfig>,
    /// Output only. Information further describing this batch predict's output.
    #[prost(message, optional, tag = "2")]
    pub output_info: ::core::option::Option<
        batch_predict_operation_metadata::BatchPredictOutputInfo,
    >,
}
/// Nested message and enum types in `BatchPredictOperationMetadata`.
pub mod batch_predict_operation_metadata {
    /// Further describes this batch predict's output.
    /// Supplements
    /// [BatchPredictOutputConfig][google.cloud.automl.v1.BatchPredictOutputConfig].
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct BatchPredictOutputInfo {
        /// The output location into which prediction output is written.
        #[prost(oneof = "batch_predict_output_info::OutputLocation", tags = "1")]
        pub output_location: ::core::option::Option<
            batch_predict_output_info::OutputLocation,
        >,
    }
    /// Nested message and enum types in `BatchPredictOutputInfo`.
    pub mod batch_predict_output_info {
        /// The output location into which prediction output is written.
        #[derive(Clone, PartialEq, ::prost::Oneof)]
        pub enum OutputLocation {
            /// The full path of the Google Cloud Storage directory created, into which
            /// the prediction output is written.
            #[prost(string, tag = "1")]
            GcsOutputDirectory(::prost::alloc::string::String),
        }
    }
}
/// Details of ExportModel operation.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExportModelOperationMetadata {
    /// Output only. Information further describing the output of this model
    /// export.
    #[prost(message, optional, tag = "2")]
    pub output_info: ::core::option::Option<
        export_model_operation_metadata::ExportModelOutputInfo,
    >,
}
/// Nested message and enum types in `ExportModelOperationMetadata`.
pub mod export_model_operation_metadata {
    /// Further describes the output of model export.
    /// Supplements
    /// [ModelExportOutputConfig][google.cloud.automl.v1.ModelExportOutputConfig].
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct ExportModelOutputInfo {
        /// The full path of the Google Cloud Storage directory created, into which
        /// the model will be exported.
        #[prost(string, tag = "1")]
        pub gcs_output_directory: ::prost::alloc::string::String,
    }
}
/// Evaluation results of a model.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ModelEvaluation {
    /// Output only. Resource name of the model evaluation.
    /// Format:
    /// `projects/{project_id}/locations/{location_id}/models/{model_id}/modelEvaluations/{model_evaluation_id}`
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Output only. The ID of the annotation spec that the model evaluation applies to. The
    /// The ID is empty for the overall model evaluation.
    /// For Tables annotation specs in the dataset do not exist and this ID is
    /// always not set, but for CLASSIFICATION
    /// [prediction_type-s][google.cloud.automl.v1.TablesModelMetadata.prediction_type]
    /// the
    /// [display_name][google.cloud.automl.v1.ModelEvaluation.display_name]
    /// field is used.
    #[prost(string, tag = "2")]
    pub annotation_spec_id: ::prost::alloc::string::String,
    /// Output only. The value of
    /// [display_name][google.cloud.automl.v1.AnnotationSpec.display_name]
    /// at the moment when the model was trained. Because this field returns a
    /// value at model training time, for different models trained from the same
    /// dataset, the values may differ, since display names could had been changed
    /// between the two model's trainings. For Tables CLASSIFICATION
    /// [prediction_type-s][google.cloud.automl.v1.TablesModelMetadata.prediction_type]
    /// distinct values of the target column at the moment of the model evaluation
    /// are populated here.
    /// The display_name is empty for the overall model evaluation.
    #[prost(string, tag = "15")]
    pub display_name: ::prost::alloc::string::String,
    /// Output only. Timestamp when this model evaluation was created.
    #[prost(message, optional, tag = "5")]
    pub create_time: ::core::option::Option<::prost_types::Timestamp>,
    /// Output only. The number of examples used for model evaluation, i.e. for
    /// which ground truth from time of model creation is compared against the
    /// predicted annotations created by the model.
    /// For overall ModelEvaluation (i.e. with annotation_spec_id not set) this is
    /// the total number of all examples used for evaluation.
    /// Otherwise, this is the count of examples that according to the ground
    /// truth were annotated by the
    /// [annotation_spec_id][google.cloud.automl.v1.ModelEvaluation.annotation_spec_id].
    #[prost(int32, tag = "6")]
    pub evaluated_example_count: i32,
    /// Output only. Problem type specific evaluation metrics.
    #[prost(oneof = "model_evaluation::Metrics", tags = "8, 9, 12, 11, 13")]
    pub metrics: ::core::option::Option<model_evaluation::Metrics>,
}
/// Nested message and enum types in `ModelEvaluation`.
pub mod model_evaluation {
    /// Output only. Problem type specific evaluation metrics.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Metrics {
        /// Model evaluation metrics for image, text, video and tables
        /// classification.
        /// Tables problem is considered a classification when the target column
        /// is CATEGORY DataType.
        #[prost(message, tag = "8")]
        ClassificationEvaluationMetrics(super::ClassificationEvaluationMetrics),
        /// Model evaluation metrics for translation.
        #[prost(message, tag = "9")]
        TranslationEvaluationMetrics(super::TranslationEvaluationMetrics),
        /// Model evaluation metrics for image object detection.
        #[prost(message, tag = "12")]
        ImageObjectDetectionEvaluationMetrics(
            super::ImageObjectDetectionEvaluationMetrics,
        ),
        /// Evaluation metrics for text sentiment models.
        #[prost(message, tag = "11")]
        TextSentimentEvaluationMetrics(super::TextSentimentEvaluationMetrics),
        /// Evaluation metrics for text extraction models.
        #[prost(message, tag = "13")]
        TextExtractionEvaluationMetrics(super::TextExtractionEvaluationMetrics),
    }
}
/// Request message for [AutoMl.CreateDataset][google.cloud.automl.v1.AutoMl.CreateDataset].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct CreateDatasetRequest {
    /// Required. The resource name of the project to create the dataset for.
    #[prost(string, tag = "1")]
    pub parent: ::prost::alloc::string::String,
    /// Required. The dataset to create.
    #[prost(message, optional, tag = "2")]
    pub dataset: ::core::option::Option<Dataset>,
}
/// Request message for [AutoMl.GetDataset][google.cloud.automl.v1.AutoMl.GetDataset].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GetDatasetRequest {
    /// Required. The resource name of the dataset to retrieve.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListDatasetsRequest {
    /// Required. The resource name of the project from which to list datasets.
    #[prost(string, tag = "1")]
    pub parent: ::prost::alloc::string::String,
    /// An expression for filtering the results of the request.
    ///
    ///    * `dataset_metadata` - for existence of the case (e.g.
    ///              `image_classification_dataset_metadata:*`). Some examples of using the filter are:
    ///
    ///    * `translation_dataset_metadata:*` --> The dataset has
    ///                                           `translation_dataset_metadata`.
    #[prost(string, tag = "3")]
    pub filter: ::prost::alloc::string::String,
    /// Requested page size. Server may return fewer results than requested.
    /// If unspecified, server will pick a default size.
    #[prost(int32, tag = "4")]
    pub page_size: i32,
    /// A token identifying a page of results for the server to return
    /// Typically obtained via
    /// [ListDatasetsResponse.next_page_token][google.cloud.automl.v1.ListDatasetsResponse.next_page_token] of the previous
    /// [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets] call.
    #[prost(string, tag = "6")]
    pub page_token: ::prost::alloc::string::String,
}
/// Response message for [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListDatasetsResponse {
    /// The datasets read.
    #[prost(message, repeated, tag = "1")]
    pub datasets: ::prost::alloc::vec::Vec<Dataset>,
    /// A token to retrieve next page of results.
    /// Pass to [ListDatasetsRequest.page_token][google.cloud.automl.v1.ListDatasetsRequest.page_token] to obtain that page.
    #[prost(string, tag = "2")]
    pub next_page_token: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.UpdateDataset][google.cloud.automl.v1.AutoMl.UpdateDataset]
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct UpdateDatasetRequest {
    /// Required. The dataset which replaces the resource on the server.
    #[prost(message, optional, tag = "1")]
    pub dataset: ::core::option::Option<Dataset>,
    /// Required. The update mask applies to the resource.
    #[prost(message, optional, tag = "2")]
    pub update_mask: ::core::option::Option<::prost_types::FieldMask>,
}
/// Request message for [AutoMl.DeleteDataset][google.cloud.automl.v1.AutoMl.DeleteDataset].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DeleteDatasetRequest {
    /// Required. The resource name of the dataset to delete.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ImportDataRequest {
    /// Required. Dataset name. Dataset must already exist. All imported
    /// annotations and examples will be added.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The desired input location and its domain specific semantics,
    /// if any.
    #[prost(message, optional, tag = "3")]
    pub input_config: ::core::option::Option<InputConfig>,
}
/// Request message for [AutoMl.ExportData][google.cloud.automl.v1.AutoMl.ExportData].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExportDataRequest {
    /// Required. The resource name of the dataset.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The desired output location.
    #[prost(message, optional, tag = "3")]
    pub output_config: ::core::option::Option<OutputConfig>,
}
/// Request message for [AutoMl.GetAnnotationSpec][google.cloud.automl.v1.AutoMl.GetAnnotationSpec].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GetAnnotationSpecRequest {
    /// Required. The resource name of the annotation spec to retrieve.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.CreateModel][google.cloud.automl.v1.AutoMl.CreateModel].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct CreateModelRequest {
    /// Required. Resource name of the parent project where the model is being created.
    #[prost(string, tag = "1")]
    pub parent: ::prost::alloc::string::String,
    /// Required. The model to create.
    #[prost(message, optional, tag = "4")]
    pub model: ::core::option::Option<Model>,
}
/// Request message for [AutoMl.GetModel][google.cloud.automl.v1.AutoMl.GetModel].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GetModelRequest {
    /// Required. Resource name of the model.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListModelsRequest {
    /// Required. Resource name of the project, from which to list the models.
    #[prost(string, tag = "1")]
    pub parent: ::prost::alloc::string::String,
    /// An expression for filtering the results of the request.
    ///
    ///    * `model_metadata` - for existence of the case (e.g.
    ///              `video_classification_model_metadata:*`).
    ///    * `dataset_id` - for = or !=. Some examples of using the filter are:
    ///
    ///    * `image_classification_model_metadata:*` --> The model has
    ///                                       `image_classification_model_metadata`.
    ///    * `dataset_id=5` --> The model was created from a dataset with ID 5.
    #[prost(string, tag = "3")]
    pub filter: ::prost::alloc::string::String,
    /// Requested page size.
    #[prost(int32, tag = "4")]
    pub page_size: i32,
    /// A token identifying a page of results for the server to return
    /// Typically obtained via
    /// [ListModelsResponse.next_page_token][google.cloud.automl.v1.ListModelsResponse.next_page_token] of the previous
    /// [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels] call.
    #[prost(string, tag = "6")]
    pub page_token: ::prost::alloc::string::String,
}
/// Response message for [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListModelsResponse {
    /// List of models in the requested page.
    #[prost(message, repeated, tag = "1")]
    pub model: ::prost::alloc::vec::Vec<Model>,
    /// A token to retrieve next page of results.
    /// Pass to [ListModelsRequest.page_token][google.cloud.automl.v1.ListModelsRequest.page_token] to obtain that page.
    #[prost(string, tag = "2")]
    pub next_page_token: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.DeleteModel][google.cloud.automl.v1.AutoMl.DeleteModel].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DeleteModelRequest {
    /// Required. Resource name of the model being deleted.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.UpdateModel][google.cloud.automl.v1.AutoMl.UpdateModel]
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct UpdateModelRequest {
    /// Required. The model which replaces the resource on the server.
    #[prost(message, optional, tag = "1")]
    pub model: ::core::option::Option<Model>,
    /// Required. The update mask applies to the resource.
    #[prost(message, optional, tag = "2")]
    pub update_mask: ::core::option::Option<::prost_types::FieldMask>,
}
/// Request message for [AutoMl.DeployModel][google.cloud.automl.v1.AutoMl.DeployModel].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DeployModelRequest {
    /// Required. Resource name of the model to deploy.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// The per-domain specific deployment parameters.
    #[prost(oneof = "deploy_model_request::ModelDeploymentMetadata", tags = "2, 4")]
    pub model_deployment_metadata: ::core::option::Option<
        deploy_model_request::ModelDeploymentMetadata,
    >,
}
/// Nested message and enum types in `DeployModelRequest`.
pub mod deploy_model_request {
    /// The per-domain specific deployment parameters.
    #[derive(Clone, Copy, PartialEq, ::prost::Oneof)]
    pub enum ModelDeploymentMetadata {
        /// Model deployment metadata specific to Image Object Detection.
        #[prost(message, tag = "2")]
        ImageObjectDetectionModelDeploymentMetadata(
            super::ImageObjectDetectionModelDeploymentMetadata,
        ),
        /// Model deployment metadata specific to Image Classification.
        #[prost(message, tag = "4")]
        ImageClassificationModelDeploymentMetadata(
            super::ImageClassificationModelDeploymentMetadata,
        ),
    }
}
/// Request message for [AutoMl.UndeployModel][google.cloud.automl.v1.AutoMl.UndeployModel].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct UndeployModelRequest {
    /// Required. Resource name of the model to undeploy.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel].
/// Models need to be enabled for exporting, otherwise an error code will be
/// returned.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExportModelRequest {
    /// Required. The resource name of the model to export.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The desired output location and configuration.
    #[prost(message, optional, tag = "3")]
    pub output_config: ::core::option::Option<ModelExportOutputConfig>,
}
/// Request message for [AutoMl.GetModelEvaluation][google.cloud.automl.v1.AutoMl.GetModelEvaluation].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GetModelEvaluationRequest {
    /// Required. Resource name for the model evaluation.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListModelEvaluationsRequest {
    /// Required. Resource name of the model to list the model evaluations for.
    /// If modelId is set as "-", this will list model evaluations from across all
    /// models of the parent location.
    #[prost(string, tag = "1")]
    pub parent: ::prost::alloc::string::String,
    /// Required. An expression for filtering the results of the request.
    ///
    ///    * `annotation_spec_id` - for =, !=  or existence. See example below for
    ///                           the last.
    ///
    /// Some examples of using the filter are:
    ///
    ///    * `annotation_spec_id!=4` --> The model evaluation was done for
    ///                              annotation spec with ID different than 4.
    ///    * `NOT annotation_spec_id:*` --> The model evaluation was done for
    ///                                 aggregate of all annotation specs.
    #[prost(string, tag = "3")]
    pub filter: ::prost::alloc::string::String,
    /// Requested page size.
    #[prost(int32, tag = "4")]
    pub page_size: i32,
    /// A token identifying a page of results for the server to return.
    /// Typically obtained via
    /// [ListModelEvaluationsResponse.next_page_token][google.cloud.automl.v1.ListModelEvaluationsResponse.next_page_token] of the previous
    /// [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations] call.
    #[prost(string, tag = "6")]
    pub page_token: ::prost::alloc::string::String,
}
/// Response message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListModelEvaluationsResponse {
    /// List of model evaluations in the requested page.
    #[prost(message, repeated, tag = "1")]
    pub model_evaluation: ::prost::alloc::vec::Vec<ModelEvaluation>,
    /// A token to retrieve next page of results.
    /// Pass to the [ListModelEvaluationsRequest.page_token][google.cloud.automl.v1.ListModelEvaluationsRequest.page_token] field of a new
    /// [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations] request to obtain that page.
    #[prost(string, tag = "2")]
    pub next_page_token: ::prost::alloc::string::String,
}
/// Generated client implementations.
pub mod auto_ml_client {
    #![allow(unused_variables, dead_code, missing_docs, clippy::let_unit_value)]
    use tonic::codegen::*;
    use tonic::codegen::http::Uri;
    /// AutoML Server API.
    ///
    /// The resource names are assigned by the server.
    /// The server never reuses names that it has created after the resources with
    /// those names are deleted.
    ///
    /// An ID of a resource is the last element of the item's resource name. For
    /// `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`, then
    /// the id for the item is `{dataset_id}`.
    ///
    /// Currently the only supported `location_id` is "us-central1".
    ///
    /// On any input that is documented to expect a string parameter in
    /// snake_case or dash-case, either of those cases is accepted.
    #[derive(Debug, Clone)]
    pub struct AutoMlClient<T> {
        inner: tonic::client::Grpc<T>,
    }
    impl<T> AutoMlClient<T>
    where
        T: tonic::client::GrpcService<tonic::body::BoxBody>,
        T::Error: Into<StdError>,
        T::ResponseBody: Body<Data = Bytes> + std::marker::Send + 'static,
        <T::ResponseBody as Body>::Error: Into<StdError> + std::marker::Send,
    {
        pub fn new(inner: T) -> Self {
            let inner = tonic::client::Grpc::new(inner);
            Self { inner }
        }
        pub fn with_origin(inner: T, origin: Uri) -> Self {
            let inner = tonic::client::Grpc::with_origin(inner, origin);
            Self { inner }
        }
        pub fn with_interceptor<F>(
            inner: T,
            interceptor: F,
        ) -> AutoMlClient<InterceptedService<T, F>>
        where
            F: tonic::service::Interceptor,
            T::ResponseBody: Default,
            T: tonic::codegen::Service<
                http::Request<tonic::body::BoxBody>,
                Response = http::Response<
                    <T as tonic::client::GrpcService<tonic::body::BoxBody>>::ResponseBody,
                >,
            >,
            <T as tonic::codegen::Service<
                http::Request<tonic::body::BoxBody>,
            >>::Error: Into<StdError> + std::marker::Send + std::marker::Sync,
        {
            AutoMlClient::new(InterceptedService::new(inner, interceptor))
        }
        /// Compress requests with the given encoding.
        ///
        /// This requires the server to support it otherwise it might respond with an
        /// error.
        #[must_use]
        pub fn send_compressed(mut self, encoding: CompressionEncoding) -> Self {
            self.inner = self.inner.send_compressed(encoding);
            self
        }
        /// Enable decompressing responses.
        #[must_use]
        pub fn accept_compressed(mut self, encoding: CompressionEncoding) -> Self {
            self.inner = self.inner.accept_compressed(encoding);
            self
        }
        /// Limits the maximum size of a decoded message.
        ///
        /// Default: `4MB`
        #[must_use]
        pub fn max_decoding_message_size(mut self, limit: usize) -> Self {
            self.inner = self.inner.max_decoding_message_size(limit);
            self
        }
        /// Limits the maximum size of an encoded message.
        ///
        /// Default: `usize::MAX`
        #[must_use]
        pub fn max_encoding_message_size(mut self, limit: usize) -> Self {
            self.inner = self.inner.max_encoding_message_size(limit);
            self
        }
        /// Creates a dataset.
        pub async fn create_dataset(
            &mut self,
            request: impl tonic::IntoRequest<super::CreateDatasetRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/CreateDataset",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1.AutoMl", "CreateDataset"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Gets a dataset.
        pub async fn get_dataset(
            &mut self,
            request: impl tonic::IntoRequest<super::GetDatasetRequest>,
        ) -> std::result::Result<tonic::Response<super::Dataset>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/GetDataset",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(GrpcMethod::new("google.cloud.automl.v1.AutoMl", "GetDataset"));
            self.inner.unary(req, path, codec).await
        }
        /// Lists datasets in a project.
        pub async fn list_datasets(
            &mut self,
            request: impl tonic::IntoRequest<super::ListDatasetsRequest>,
        ) -> std::result::Result<
            tonic::Response<super::ListDatasetsResponse>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/ListDatasets",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1.AutoMl", "ListDatasets"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Updates a dataset.
        pub async fn update_dataset(
            &mut self,
            request: impl tonic::IntoRequest<super::UpdateDatasetRequest>,
        ) -> std::result::Result<tonic::Response<super::Dataset>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/UpdateDataset",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1.AutoMl", "UpdateDataset"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Deletes a dataset and all of its contents.
        /// Returns empty response in the
        /// [response][google.longrunning.Operation.response] field when it completes,
        /// and `delete_details` in the
        /// [metadata][google.longrunning.Operation.metadata] field.
        pub async fn delete_dataset(
            &mut self,
            request: impl tonic::IntoRequest<super::DeleteDatasetRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/DeleteDataset",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1.AutoMl", "DeleteDataset"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Imports data into a dataset.
        /// For Tables this method can only be called on an empty Dataset.
        ///
        /// For Tables:
        /// *   A
        /// [schema_inference_version][google.cloud.automl.v1.InputConfig.params]
        ///     parameter must be explicitly set.
        /// Returns an empty response in the
        /// [response][google.longrunning.Operation.response] field when it completes.
        pub async fn import_data(
            &mut self,
            request: impl tonic::IntoRequest<super::ImportDataRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/ImportData",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(GrpcMethod::new("google.cloud.automl.v1.AutoMl", "ImportData"));
            self.inner.unary(req, path, codec).await
        }
        /// Exports dataset's data to the provided output location.
        /// Returns an empty response in the
        /// [response][google.longrunning.Operation.response] field when it completes.
        pub async fn export_data(
            &mut self,
            request: impl tonic::IntoRequest<super::ExportDataRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/ExportData",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(GrpcMethod::new("google.cloud.automl.v1.AutoMl", "ExportData"));
            self.inner.unary(req, path, codec).await
        }
        /// Gets an annotation spec.
        pub async fn get_annotation_spec(
            &mut self,
            request: impl tonic::IntoRequest<super::GetAnnotationSpecRequest>,
        ) -> std::result::Result<tonic::Response<super::AnnotationSpec>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/GetAnnotationSpec",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1.AutoMl", "GetAnnotationSpec"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Creates a model.
        /// Returns a Model in the [response][google.longrunning.Operation.response]
        /// field when it completes.
        /// When you create a model, several model evaluations are created for it:
        /// a global evaluation, and one evaluation for each annotation spec.
        pub async fn create_model(
            &mut self,
            request: impl tonic::IntoRequest<super::CreateModelRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/CreateModel",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(GrpcMethod::new("google.cloud.automl.v1.AutoMl", "CreateModel"));
            self.inner.unary(req, path, codec).await
        }
        /// Gets a model.
        pub async fn get_model(
            &mut self,
            request: impl tonic::IntoRequest<super::GetModelRequest>,
        ) -> std::result::Result<tonic::Response<super::Model>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/GetModel",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(GrpcMethod::new("google.cloud.automl.v1.AutoMl", "GetModel"));
            self.inner.unary(req, path, codec).await
        }
        /// Lists models.
        pub async fn list_models(
            &mut self,
            request: impl tonic::IntoRequest<super::ListModelsRequest>,
        ) -> std::result::Result<
            tonic::Response<super::ListModelsResponse>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/ListModels",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(GrpcMethod::new("google.cloud.automl.v1.AutoMl", "ListModels"));
            self.inner.unary(req, path, codec).await
        }
        /// Deletes a model.
        /// Returns `google.protobuf.Empty` in the
        /// [response][google.longrunning.Operation.response] field when it completes,
        /// and `delete_details` in the
        /// [metadata][google.longrunning.Operation.metadata] field.
        pub async fn delete_model(
            &mut self,
            request: impl tonic::IntoRequest<super::DeleteModelRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/DeleteModel",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(GrpcMethod::new("google.cloud.automl.v1.AutoMl", "DeleteModel"));
            self.inner.unary(req, path, codec).await
        }
        /// Updates a model.
        pub async fn update_model(
            &mut self,
            request: impl tonic::IntoRequest<super::UpdateModelRequest>,
        ) -> std::result::Result<tonic::Response<super::Model>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/UpdateModel",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(GrpcMethod::new("google.cloud.automl.v1.AutoMl", "UpdateModel"));
            self.inner.unary(req, path, codec).await
        }
        /// Deploys a model. If a model is already deployed, deploying it with the
        /// same parameters has no effect. Deploying with different parametrs
        /// (as e.g. changing
        /// [node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number])
        ///  will reset the deployment state without pausing the model's availability.
        ///
        /// Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage
        /// deployment automatically.
        ///
        /// Returns an empty response in the
        /// [response][google.longrunning.Operation.response] field when it completes.
        pub async fn deploy_model(
            &mut self,
            request: impl tonic::IntoRequest<super::DeployModelRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/DeployModel",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(GrpcMethod::new("google.cloud.automl.v1.AutoMl", "DeployModel"));
            self.inner.unary(req, path, codec).await
        }
        /// Undeploys a model. If the model is not deployed this method has no effect.
        ///
        /// Only applicable for Text Classification, Image Object Detection and Tables;
        /// all other domains manage deployment automatically.
        ///
        /// Returns an empty response in the
        /// [response][google.longrunning.Operation.response] field when it completes.
        pub async fn undeploy_model(
            &mut self,
            request: impl tonic::IntoRequest<super::UndeployModelRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/UndeployModel",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1.AutoMl", "UndeployModel"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Exports a trained, "export-able", model to a user specified Google Cloud
        /// Storage location. A model is considered export-able if and only if it has
        /// an export format defined for it in
        /// [ModelExportOutputConfig][google.cloud.automl.v1.ModelExportOutputConfig].
        ///
        /// Returns an empty response in the
        /// [response][google.longrunning.Operation.response] field when it completes.
        pub async fn export_model(
            &mut self,
            request: impl tonic::IntoRequest<super::ExportModelRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/ExportModel",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(GrpcMethod::new("google.cloud.automl.v1.AutoMl", "ExportModel"));
            self.inner.unary(req, path, codec).await
        }
        /// Gets a model evaluation.
        pub async fn get_model_evaluation(
            &mut self,
            request: impl tonic::IntoRequest<super::GetModelEvaluationRequest>,
        ) -> std::result::Result<
            tonic::Response<super::ModelEvaluation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/GetModelEvaluation",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1.AutoMl",
                        "GetModelEvaluation",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Lists model evaluations.
        pub async fn list_model_evaluations(
            &mut self,
            request: impl tonic::IntoRequest<super::ListModelEvaluationsRequest>,
        ) -> std::result::Result<
            tonic::Response<super::ListModelEvaluationsResponse>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1.AutoMl/ListModelEvaluations",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1.AutoMl",
                        "ListModelEvaluations",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
    }
}