Struct google_api_proto::google::cloud::aiplatform::v1beta1::schema::trainingjob::definition::AutoMlForecastingInputs
source · pub struct AutoMlForecastingInputs {Show 17 fields
pub target_column: String,
pub time_series_identifier_column: String,
pub time_column: String,
pub transformations: Vec<Transformation>,
pub optimization_objective: String,
pub train_budget_milli_node_hours: i64,
pub weight_column: String,
pub time_series_attribute_columns: Vec<String>,
pub unavailable_at_forecast_columns: Vec<String>,
pub available_at_forecast_columns: Vec<String>,
pub data_granularity: Option<Granularity>,
pub forecast_horizon: i64,
pub context_window: i64,
pub export_evaluated_data_items_config: Option<ExportEvaluatedDataItemsConfig>,
pub quantiles: Vec<f64>,
pub validation_options: String,
pub additional_experiments: Vec<String>,
}
Fields§
§target_column: String
The name of the column that the model is to predict.
time_series_identifier_column: String
The name of the column that identifies the time series.
time_column: String
The name of the column that identifies time order in the time series.
transformations: Vec<Transformation>
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using “.” as the delimiter.
optimization_objective: String
Objective function the model is optimizing towards. The training process creates a model that optimizes the value of the objective function over the validation set.
The supported optimization objectives:
-
“minimize-rmse” (default) - Minimize root-mean-squared error (RMSE).
-
“minimize-mae” - Minimize mean-absolute error (MAE).
-
“minimize-rmsle” - Minimize root-mean-squared log error (RMSLE).
-
“minimize-rmspe” - Minimize root-mean-squared percentage error (RMSPE).
-
“minimize-wape-mae” - Minimize the combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE).
-
“minimize-quantile-loss” - Minimize the quantile loss at the quantiles defined in
quantiles
.
train_budget_milli_node_hours: i64
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour.
The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend’s discretion. This especially may happen when further model training ceases to provide any improvements.
If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won’t be attempted and will error.
The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
weight_column: String
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
time_series_attribute_columns: Vec<String>
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
available_at_forecast_columns: Vec<String>
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
data_granularity: Option<Granularity>
Expected difference in time granularity between rows in the data.
forecast_horizon: i64
The amount of time into the future for which forecasted values for the
target are returned. Expressed in number of units defined by the
data_granularity
field.
context_window: i64
The amount of time into the past training and prediction data is used
for model training and prediction respectively. Expressed in number of
units defined by the data_granularity
field.
export_evaluated_data_items_config: Option<ExportEvaluatedDataItemsConfig>
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
quantiles: Vec<f64>
Quantiles to use for minimize-quantile-loss optimization_objective
. Up to
5 quantiles are allowed of values between 0 and 1, exclusive. Required if
the value of optimization_objective is minimize-quantile-loss. Represents
the percent quantiles to use for that objective. Quantiles must be unique.
validation_options: String
Validation options for the data validation component. The available options are:
-
“fail-pipeline” - default, will validate against the validation and fail the pipeline if it fails.
-
“ignore-validation” - ignore the results of the validation and continue
additional_experiments: Vec<String>
Additional experiment flags for the time series forcasting training.
Trait Implementations§
source§impl Clone for AutoMlForecastingInputs
impl Clone for AutoMlForecastingInputs
source§fn clone(&self) -> AutoMlForecastingInputs
fn clone(&self) -> AutoMlForecastingInputs
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for AutoMlForecastingInputs
impl Debug for AutoMlForecastingInputs
source§impl Default for AutoMlForecastingInputs
impl Default for AutoMlForecastingInputs
source§impl Message for AutoMlForecastingInputs
impl Message for AutoMlForecastingInputs
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
.source§impl PartialEq for AutoMlForecastingInputs
impl PartialEq for AutoMlForecastingInputs
source§fn eq(&self, other: &AutoMlForecastingInputs) -> bool
fn eq(&self, other: &AutoMlForecastingInputs) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for AutoMlForecastingInputs
Auto Trait Implementations§
impl Freeze for AutoMlForecastingInputs
impl RefUnwindSafe for AutoMlForecastingInputs
impl Send for AutoMlForecastingInputs
impl Sync for AutoMlForecastingInputs
impl Unpin for AutoMlForecastingInputs
impl UnwindSafe for AutoMlForecastingInputs
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request