1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
// This file is @generated by prost-build.
/// A TrainingJob that trains and uploads an AutoML Text Classification Model.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlTextClassification {
    /// The input parameters of this TrainingJob.
    #[prost(message, optional, tag = "1")]
    pub inputs: ::core::option::Option<AutoMlTextClassificationInputs>,
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlTextClassificationInputs {
    #[prost(bool, tag = "1")]
    pub multi_label: bool,
}
/// A TrainingJob that trains and uploads an AutoML Video ObjectTracking Model.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlVideoObjectTracking {
    /// The input parameters of this TrainingJob.
    #[prost(message, optional, tag = "1")]
    pub inputs: ::core::option::Option<AutoMlVideoObjectTrackingInputs>,
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlVideoObjectTrackingInputs {
    #[prost(enumeration = "auto_ml_video_object_tracking_inputs::ModelType", tag = "1")]
    pub model_type: i32,
}
/// Nested message and enum types in `AutoMlVideoObjectTrackingInputs`.
pub mod auto_ml_video_object_tracking_inputs {
    #[derive(
        Clone,
        Copy,
        Debug,
        PartialEq,
        Eq,
        Hash,
        PartialOrd,
        Ord,
        ::prost::Enumeration
    )]
    #[repr(i32)]
    pub enum ModelType {
        /// Should not be set.
        Unspecified = 0,
        /// A model best tailored to be used within Google Cloud, and which c annot
        /// be exported. Default.
        Cloud = 1,
        /// A model that, in addition to being available within Google Cloud, can
        /// also be exported (see ModelService.ExportModel) as a TensorFlow or
        /// TensorFlow Lite model and used on a mobile or edge device afterwards.
        MobileVersatile1 = 2,
        /// A versatile model that is meant to be exported (see
        /// ModelService.ExportModel) and used on a Google Coral device.
        MobileCoralVersatile1 = 3,
        /// A model that trades off quality for low latency, to be exported (see
        /// ModelService.ExportModel) and used on a Google Coral device.
        MobileCoralLowLatency1 = 4,
        /// A versatile model that is meant to be exported (see
        /// ModelService.ExportModel) and used on an NVIDIA Jetson device.
        MobileJetsonVersatile1 = 5,
        /// A model that trades off quality for low latency, to be exported (see
        /// ModelService.ExportModel) and used on an NVIDIA Jetson device.
        MobileJetsonLowLatency1 = 6,
    }
    impl ModelType {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                ModelType::Unspecified => "MODEL_TYPE_UNSPECIFIED",
                ModelType::Cloud => "CLOUD",
                ModelType::MobileVersatile1 => "MOBILE_VERSATILE_1",
                ModelType::MobileCoralVersatile1 => "MOBILE_CORAL_VERSATILE_1",
                ModelType::MobileCoralLowLatency1 => "MOBILE_CORAL_LOW_LATENCY_1",
                ModelType::MobileJetsonVersatile1 => "MOBILE_JETSON_VERSATILE_1",
                ModelType::MobileJetsonLowLatency1 => "MOBILE_JETSON_LOW_LATENCY_1",
            }
        }
        /// Creates an enum from field names used in the ProtoBuf definition.
        pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
            match value {
                "MODEL_TYPE_UNSPECIFIED" => Some(Self::Unspecified),
                "CLOUD" => Some(Self::Cloud),
                "MOBILE_VERSATILE_1" => Some(Self::MobileVersatile1),
                "MOBILE_CORAL_VERSATILE_1" => Some(Self::MobileCoralVersatile1),
                "MOBILE_CORAL_LOW_LATENCY_1" => Some(Self::MobileCoralLowLatency1),
                "MOBILE_JETSON_VERSATILE_1" => Some(Self::MobileJetsonVersatile1),
                "MOBILE_JETSON_LOW_LATENCY_1" => Some(Self::MobileJetsonLowLatency1),
                _ => None,
            }
        }
    }
}
/// A TrainingJob that trains and uploads an AutoML Image Segmentation Model.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AutoMlImageSegmentation {
    /// The input parameters of this TrainingJob.
    #[prost(message, optional, tag = "1")]
    pub inputs: ::core::option::Option<AutoMlImageSegmentationInputs>,
    /// The metadata information.
    #[prost(message, optional, tag = "2")]
    pub metadata: ::core::option::Option<AutoMlImageSegmentationMetadata>,
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AutoMlImageSegmentationInputs {
    #[prost(enumeration = "auto_ml_image_segmentation_inputs::ModelType", tag = "1")]
    pub model_type: i32,
    /// The training budget of creating this model, expressed in milli node
    /// hours i.e. 1,000 value in this field means 1 node hour. The actual
    /// metadata.costMilliNodeHours will be equal or less than this value.
    /// If further model training ceases to provide any improvements, it will
    /// stop without using the full budget and the metadata.successfulStopReason
    /// will be `model-converged`.
    /// Note, node_hour  = actual_hour * number_of_nodes_involved. Or
    /// actaul_wall_clock_hours = train_budget_milli_node_hours /
    ///                            (number_of_nodes_involved * 1000)
    /// For modelType `cloud-high-accuracy-1`(default), the budget must be between
    /// 20,000 and 2,000,000 milli node hours, inclusive. The default value is
    /// 192,000 which represents one day in wall time
    /// (1000 milli * 24 hours * 8 nodes).
    #[prost(int64, tag = "2")]
    pub budget_milli_node_hours: i64,
    /// The ID of the `base` model. If it is specified, the new model will be
    /// trained based on the `base` model. Otherwise, the new model will be
    /// trained from scratch. The `base` model must be in the same
    /// Project and Location as the new Model to train, and have the same
    /// modelType.
    #[prost(string, tag = "3")]
    pub base_model_id: ::prost::alloc::string::String,
}
/// Nested message and enum types in `AutoMlImageSegmentationInputs`.
pub mod auto_ml_image_segmentation_inputs {
    #[derive(
        Clone,
        Copy,
        Debug,
        PartialEq,
        Eq,
        Hash,
        PartialOrd,
        Ord,
        ::prost::Enumeration
    )]
    #[repr(i32)]
    pub enum ModelType {
        /// Should not be set.
        Unspecified = 0,
        /// A model to be used via prediction calls to uCAIP API. Expected
        /// to have a higher latency, but should also have a higher prediction
        /// quality than other models.
        CloudHighAccuracy1 = 1,
        /// A model to be used via prediction calls to uCAIP API. Expected
        /// to have a lower latency but relatively lower prediction quality.
        CloudLowAccuracy1 = 2,
        /// A model that, in addition to being available within Google
        /// Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow
        /// model and used on a mobile or edge device afterwards.
        /// Expected to have low latency, but may have lower prediction
        /// quality than other mobile models.
        MobileTfLowLatency1 = 3,
    }
    impl ModelType {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                ModelType::Unspecified => "MODEL_TYPE_UNSPECIFIED",
                ModelType::CloudHighAccuracy1 => "CLOUD_HIGH_ACCURACY_1",
                ModelType::CloudLowAccuracy1 => "CLOUD_LOW_ACCURACY_1",
                ModelType::MobileTfLowLatency1 => "MOBILE_TF_LOW_LATENCY_1",
            }
        }
        /// Creates an enum from field names used in the ProtoBuf definition.
        pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
            match value {
                "MODEL_TYPE_UNSPECIFIED" => Some(Self::Unspecified),
                "CLOUD_HIGH_ACCURACY_1" => Some(Self::CloudHighAccuracy1),
                "CLOUD_LOW_ACCURACY_1" => Some(Self::CloudLowAccuracy1),
                "MOBILE_TF_LOW_LATENCY_1" => Some(Self::MobileTfLowLatency1),
                _ => None,
            }
        }
    }
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlImageSegmentationMetadata {
    /// The actual training cost of creating this model, expressed in
    /// milli node hours, i.e. 1,000 value in this field means 1 node hour.
    /// Guaranteed to not exceed inputs.budgetMilliNodeHours.
    #[prost(int64, tag = "1")]
    pub cost_milli_node_hours: i64,
    /// For successful job completions, this is the reason why the job has
    /// finished.
    #[prost(
        enumeration = "auto_ml_image_segmentation_metadata::SuccessfulStopReason",
        tag = "2"
    )]
    pub successful_stop_reason: i32,
}
/// Nested message and enum types in `AutoMlImageSegmentationMetadata`.
pub mod auto_ml_image_segmentation_metadata {
    #[derive(
        Clone,
        Copy,
        Debug,
        PartialEq,
        Eq,
        Hash,
        PartialOrd,
        Ord,
        ::prost::Enumeration
    )]
    #[repr(i32)]
    pub enum SuccessfulStopReason {
        /// Should not be set.
        Unspecified = 0,
        /// The inputs.budgetMilliNodeHours had been reached.
        BudgetReached = 1,
        /// Further training of the Model ceased to increase its quality, since it
        /// already has converged.
        ModelConverged = 2,
    }
    impl SuccessfulStopReason {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                SuccessfulStopReason::Unspecified => "SUCCESSFUL_STOP_REASON_UNSPECIFIED",
                SuccessfulStopReason::BudgetReached => "BUDGET_REACHED",
                SuccessfulStopReason::ModelConverged => "MODEL_CONVERGED",
            }
        }
        /// Creates an enum from field names used in the ProtoBuf definition.
        pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
            match value {
                "SUCCESSFUL_STOP_REASON_UNSPECIFIED" => Some(Self::Unspecified),
                "BUDGET_REACHED" => Some(Self::BudgetReached),
                "MODEL_CONVERGED" => Some(Self::ModelConverged),
                _ => None,
            }
        }
    }
}
/// A TrainingJob that trains and uploads an AutoML Image Object Detection Model.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlImageObjectDetection {
    /// The input parameters of this TrainingJob.
    #[prost(message, optional, tag = "1")]
    pub inputs: ::core::option::Option<AutoMlImageObjectDetectionInputs>,
    /// The metadata information
    #[prost(message, optional, tag = "2")]
    pub metadata: ::core::option::Option<AutoMlImageObjectDetectionMetadata>,
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlImageObjectDetectionInputs {
    #[prost(enumeration = "auto_ml_image_object_detection_inputs::ModelType", tag = "1")]
    pub model_type: i32,
    /// The training budget of creating this model, expressed in milli node
    /// hours i.e. 1,000 value in this field means 1 node hour. The actual
    /// metadata.costMilliNodeHours will be equal or less than this value.
    /// If further model training ceases to provide any improvements, it will
    /// stop without using the full budget and the metadata.successfulStopReason
    /// will be `model-converged`.
    /// Note, node_hour  = actual_hour * number_of_nodes_involved.
    /// For modelType `cloud`(default), the budget must be between 20,000
    /// and 900,000 milli node hours, inclusive. The default value is 216,000
    /// which represents one day in wall time, considering 9 nodes are used.
    /// For model types `mobile-tf-low-latency-1`, `mobile-tf-versatile-1`,
    /// `mobile-tf-high-accuracy-1`
    /// the training budget must be between 1,000 and 100,000 milli node hours,
    /// inclusive. The default value is 24,000 which represents one day in
    /// wall time on a single node that is used.
    #[prost(int64, tag = "2")]
    pub budget_milli_node_hours: i64,
    /// Use the entire training budget. This disables the early stopping feature.
    /// When false the early stopping feature is enabled, which means that AutoML
    /// Image Object Detection might stop training before the entire training
    /// budget has been used.
    #[prost(bool, tag = "3")]
    pub disable_early_stopping: bool,
}
/// Nested message and enum types in `AutoMlImageObjectDetectionInputs`.
pub mod auto_ml_image_object_detection_inputs {
    #[derive(
        Clone,
        Copy,
        Debug,
        PartialEq,
        Eq,
        Hash,
        PartialOrd,
        Ord,
        ::prost::Enumeration
    )]
    #[repr(i32)]
    pub enum ModelType {
        /// Should not be set.
        Unspecified = 0,
        /// A model best tailored to be used within Google Cloud, and which cannot
        /// be exported. Expected to have a higher latency, but should also have a
        /// higher prediction quality than other cloud models.
        CloudHighAccuracy1 = 1,
        /// A model best tailored to be used within Google Cloud, and which cannot
        /// be exported. Expected to have a low latency, but may have lower
        /// prediction quality than other cloud models.
        CloudLowLatency1 = 2,
        /// A model that, in addition to being available within Google
        /// Cloud can also be exported (see ModelService.ExportModel) and
        /// used on a mobile or edge device with TensorFlow afterwards.
        /// Expected to have low latency, but may have lower prediction
        /// quality than other mobile models.
        MobileTfLowLatency1 = 3,
        /// A model that, in addition to being available within Google
        /// Cloud can also be exported (see ModelService.ExportModel) and
        /// used on a mobile or edge device with TensorFlow afterwards.
        MobileTfVersatile1 = 4,
        /// A model that, in addition to being available within Google
        /// Cloud, can also be exported (see ModelService.ExportModel) and
        /// used on a mobile or edge device with TensorFlow afterwards.
        /// Expected to have a higher latency, but should also have a higher
        /// prediction quality than other mobile models.
        MobileTfHighAccuracy1 = 5,
    }
    impl ModelType {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                ModelType::Unspecified => "MODEL_TYPE_UNSPECIFIED",
                ModelType::CloudHighAccuracy1 => "CLOUD_HIGH_ACCURACY_1",
                ModelType::CloudLowLatency1 => "CLOUD_LOW_LATENCY_1",
                ModelType::MobileTfLowLatency1 => "MOBILE_TF_LOW_LATENCY_1",
                ModelType::MobileTfVersatile1 => "MOBILE_TF_VERSATILE_1",
                ModelType::MobileTfHighAccuracy1 => "MOBILE_TF_HIGH_ACCURACY_1",
            }
        }
        /// Creates an enum from field names used in the ProtoBuf definition.
        pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
            match value {
                "MODEL_TYPE_UNSPECIFIED" => Some(Self::Unspecified),
                "CLOUD_HIGH_ACCURACY_1" => Some(Self::CloudHighAccuracy1),
                "CLOUD_LOW_LATENCY_1" => Some(Self::CloudLowLatency1),
                "MOBILE_TF_LOW_LATENCY_1" => Some(Self::MobileTfLowLatency1),
                "MOBILE_TF_VERSATILE_1" => Some(Self::MobileTfVersatile1),
                "MOBILE_TF_HIGH_ACCURACY_1" => Some(Self::MobileTfHighAccuracy1),
                _ => None,
            }
        }
    }
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlImageObjectDetectionMetadata {
    /// The actual training cost of creating this model, expressed in
    /// milli node hours, i.e. 1,000 value in this field means 1 node hour.
    /// Guaranteed to not exceed inputs.budgetMilliNodeHours.
    #[prost(int64, tag = "1")]
    pub cost_milli_node_hours: i64,
    /// For successful job completions, this is the reason why the job has
    /// finished.
    #[prost(
        enumeration = "auto_ml_image_object_detection_metadata::SuccessfulStopReason",
        tag = "2"
    )]
    pub successful_stop_reason: i32,
}
/// Nested message and enum types in `AutoMlImageObjectDetectionMetadata`.
pub mod auto_ml_image_object_detection_metadata {
    #[derive(
        Clone,
        Copy,
        Debug,
        PartialEq,
        Eq,
        Hash,
        PartialOrd,
        Ord,
        ::prost::Enumeration
    )]
    #[repr(i32)]
    pub enum SuccessfulStopReason {
        /// Should not be set.
        Unspecified = 0,
        /// The inputs.budgetMilliNodeHours had been reached.
        BudgetReached = 1,
        /// Further training of the Model ceased to increase its quality, since it
        /// already has converged.
        ModelConverged = 2,
    }
    impl SuccessfulStopReason {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                SuccessfulStopReason::Unspecified => "SUCCESSFUL_STOP_REASON_UNSPECIFIED",
                SuccessfulStopReason::BudgetReached => "BUDGET_REACHED",
                SuccessfulStopReason::ModelConverged => "MODEL_CONVERGED",
            }
        }
        /// Creates an enum from field names used in the ProtoBuf definition.
        pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
            match value {
                "SUCCESSFUL_STOP_REASON_UNSPECIFIED" => Some(Self::Unspecified),
                "BUDGET_REACHED" => Some(Self::BudgetReached),
                "MODEL_CONVERGED" => Some(Self::ModelConverged),
                _ => None,
            }
        }
    }
}
/// A TrainingJob that trains and uploads an AutoML Text Sentiment Model.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlTextSentiment {
    /// The input parameters of this TrainingJob.
    #[prost(message, optional, tag = "1")]
    pub inputs: ::core::option::Option<AutoMlTextSentimentInputs>,
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlTextSentimentInputs {
    /// A sentiment is expressed as an integer ordinal, where higher value
    /// means a more positive sentiment. The range of sentiments that will be used
    /// is between 0 and sentimentMax (inclusive on both ends), and all the values
    /// in the range must be represented in the dataset before a model can be
    /// created.
    /// Only the Annotations with this sentimentMax will be used for training.
    /// sentimentMax value must be between 1 and 10 (inclusive).
    #[prost(int32, tag = "1")]
    pub sentiment_max: i32,
}
/// A TrainingJob that trains and uploads an AutoML Video Classification Model.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlVideoClassification {
    /// The input parameters of this TrainingJob.
    #[prost(message, optional, tag = "1")]
    pub inputs: ::core::option::Option<AutoMlVideoClassificationInputs>,
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlVideoClassificationInputs {
    #[prost(enumeration = "auto_ml_video_classification_inputs::ModelType", tag = "1")]
    pub model_type: i32,
}
/// Nested message and enum types in `AutoMlVideoClassificationInputs`.
pub mod auto_ml_video_classification_inputs {
    #[derive(
        Clone,
        Copy,
        Debug,
        PartialEq,
        Eq,
        Hash,
        PartialOrd,
        Ord,
        ::prost::Enumeration
    )]
    #[repr(i32)]
    pub enum ModelType {
        /// Should not be set.
        Unspecified = 0,
        /// A model best tailored to be used within Google Cloud, and which cannot
        /// be exported. Default.
        Cloud = 1,
        /// A model that, in addition to being available within Google Cloud, can
        /// also be exported (see ModelService.ExportModel) as a TensorFlow or
        /// TensorFlow Lite model and used on a mobile or edge device afterwards.
        MobileVersatile1 = 2,
        /// A model that, in addition to being available within Google Cloud, can
        /// also be exported (see ModelService.ExportModel) to a Jetson device
        /// afterwards.
        MobileJetsonVersatile1 = 3,
    }
    impl ModelType {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                ModelType::Unspecified => "MODEL_TYPE_UNSPECIFIED",
                ModelType::Cloud => "CLOUD",
                ModelType::MobileVersatile1 => "MOBILE_VERSATILE_1",
                ModelType::MobileJetsonVersatile1 => "MOBILE_JETSON_VERSATILE_1",
            }
        }
        /// Creates an enum from field names used in the ProtoBuf definition.
        pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
            match value {
                "MODEL_TYPE_UNSPECIFIED" => Some(Self::Unspecified),
                "CLOUD" => Some(Self::Cloud),
                "MOBILE_VERSATILE_1" => Some(Self::MobileVersatile1),
                "MOBILE_JETSON_VERSATILE_1" => Some(Self::MobileJetsonVersatile1),
                _ => None,
            }
        }
    }
}
/// A TrainingJob that trains and uploads an AutoML Image Classification Model.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AutoMlImageClassification {
    /// The input parameters of this TrainingJob.
    #[prost(message, optional, tag = "1")]
    pub inputs: ::core::option::Option<AutoMlImageClassificationInputs>,
    /// The metadata information.
    #[prost(message, optional, tag = "2")]
    pub metadata: ::core::option::Option<AutoMlImageClassificationMetadata>,
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AutoMlImageClassificationInputs {
    #[prost(enumeration = "auto_ml_image_classification_inputs::ModelType", tag = "1")]
    pub model_type: i32,
    /// The ID of the `base` model. If it is specified, the new model will be
    /// trained based on the `base` model. Otherwise, the new model will be
    /// trained from scratch. The `base` model must be in the same
    /// Project and Location as the new Model to train, and have the same
    /// modelType.
    #[prost(string, tag = "2")]
    pub base_model_id: ::prost::alloc::string::String,
    /// The training budget of creating this model, expressed in milli node
    /// hours i.e. 1,000 value in this field means 1 node hour. The actual
    /// metadata.costMilliNodeHours will be equal or less than this value.
    /// If further model training ceases to provide any improvements, it will
    /// stop without using the full budget and the metadata.successfulStopReason
    /// will be `model-converged`.
    /// Note, node_hour  = actual_hour * number_of_nodes_involved.
    /// For modelType `cloud`(default), the budget must be between 8,000
    /// and 800,000 milli node hours, inclusive. The default value is 192,000
    /// which represents one day in wall time, considering 8 nodes are used.
    /// For model types `mobile-tf-low-latency-1`, `mobile-tf-versatile-1`,
    /// `mobile-tf-high-accuracy-1`, the training budget must be between
    /// 1,000 and 100,000 milli node hours, inclusive.
    /// The default value is 24,000 which represents one day in wall time on a
    /// single node that is used.
    #[prost(int64, tag = "3")]
    pub budget_milli_node_hours: i64,
    /// Use the entire training budget. This disables the early stopping feature.
    /// When false the early stopping feature is enabled, which means that
    /// AutoML Image Classification might stop training before the entire
    /// training budget has been used.
    #[prost(bool, tag = "4")]
    pub disable_early_stopping: bool,
    /// If false, a single-label (multi-class) Model will be trained (i.e.
    /// assuming that for each image just up to one annotation may be
    /// applicable). If true, a multi-label Model will be trained (i.e.
    /// assuming that for each image multiple annotations may be applicable).
    #[prost(bool, tag = "5")]
    pub multi_label: bool,
}
/// Nested message and enum types in `AutoMlImageClassificationInputs`.
pub mod auto_ml_image_classification_inputs {
    #[derive(
        Clone,
        Copy,
        Debug,
        PartialEq,
        Eq,
        Hash,
        PartialOrd,
        Ord,
        ::prost::Enumeration
    )]
    #[repr(i32)]
    pub enum ModelType {
        /// Should not be set.
        Unspecified = 0,
        /// A Model best tailored to be used within Google Cloud, and which cannot
        /// be exported.
        /// Default.
        Cloud = 1,
        /// A model that, in addition to being available within Google
        /// Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow
        /// or Core ML model and used on a mobile or edge device afterwards.
        /// Expected to have low latency, but may have lower prediction
        /// quality than other mobile models.
        MobileTfLowLatency1 = 2,
        /// A model that, in addition to being available within Google
        /// Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow
        /// or Core ML model and used on a mobile or edge device with afterwards.
        MobileTfVersatile1 = 3,
        /// A model that, in addition to being available within Google
        /// Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow
        /// or Core ML model and used on a mobile or edge device afterwards.
        /// Expected to have a higher latency, but should also have a higher
        /// prediction quality than other mobile models.
        MobileTfHighAccuracy1 = 4,
    }
    impl ModelType {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                ModelType::Unspecified => "MODEL_TYPE_UNSPECIFIED",
                ModelType::Cloud => "CLOUD",
                ModelType::MobileTfLowLatency1 => "MOBILE_TF_LOW_LATENCY_1",
                ModelType::MobileTfVersatile1 => "MOBILE_TF_VERSATILE_1",
                ModelType::MobileTfHighAccuracy1 => "MOBILE_TF_HIGH_ACCURACY_1",
            }
        }
        /// Creates an enum from field names used in the ProtoBuf definition.
        pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
            match value {
                "MODEL_TYPE_UNSPECIFIED" => Some(Self::Unspecified),
                "CLOUD" => Some(Self::Cloud),
                "MOBILE_TF_LOW_LATENCY_1" => Some(Self::MobileTfLowLatency1),
                "MOBILE_TF_VERSATILE_1" => Some(Self::MobileTfVersatile1),
                "MOBILE_TF_HIGH_ACCURACY_1" => Some(Self::MobileTfHighAccuracy1),
                _ => None,
            }
        }
    }
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlImageClassificationMetadata {
    /// The actual training cost of creating this model, expressed in
    /// milli node hours, i.e. 1,000 value in this field means 1 node hour.
    /// Guaranteed to not exceed inputs.budgetMilliNodeHours.
    #[prost(int64, tag = "1")]
    pub cost_milli_node_hours: i64,
    /// For successful job completions, this is the reason why the job has
    /// finished.
    #[prost(
        enumeration = "auto_ml_image_classification_metadata::SuccessfulStopReason",
        tag = "2"
    )]
    pub successful_stop_reason: i32,
}
/// Nested message and enum types in `AutoMlImageClassificationMetadata`.
pub mod auto_ml_image_classification_metadata {
    #[derive(
        Clone,
        Copy,
        Debug,
        PartialEq,
        Eq,
        Hash,
        PartialOrd,
        Ord,
        ::prost::Enumeration
    )]
    #[repr(i32)]
    pub enum SuccessfulStopReason {
        /// Should not be set.
        Unspecified = 0,
        /// The inputs.budgetMilliNodeHours had been reached.
        BudgetReached = 1,
        /// Further training of the Model ceased to increase its quality, since it
        /// already has converged.
        ModelConverged = 2,
    }
    impl SuccessfulStopReason {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                SuccessfulStopReason::Unspecified => "SUCCESSFUL_STOP_REASON_UNSPECIFIED",
                SuccessfulStopReason::BudgetReached => "BUDGET_REACHED",
                SuccessfulStopReason::ModelConverged => "MODEL_CONVERGED",
            }
        }
        /// Creates an enum from field names used in the ProtoBuf definition.
        pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
            match value {
                "SUCCESSFUL_STOP_REASON_UNSPECIFIED" => Some(Self::Unspecified),
                "BUDGET_REACHED" => Some(Self::BudgetReached),
                "MODEL_CONVERGED" => Some(Self::ModelConverged),
                _ => None,
            }
        }
    }
}
/// A TrainingJob that trains and uploads an AutoML Text Extraction Model.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlTextExtraction {
    /// The input parameters of this TrainingJob.
    #[prost(message, optional, tag = "1")]
    pub inputs: ::core::option::Option<AutoMlTextExtractionInputs>,
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlTextExtractionInputs {}
/// Configuration for exporting test set predictions to a BigQuery table.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExportEvaluatedDataItemsConfig {
    /// URI of desired destination BigQuery table. Expected format:
    /// bq://<project_id>:<dataset_id>:<table>
    ///
    /// If not specified, then results are exported to the following auto-created
    /// BigQuery table:
    /// <project_id>:export_evaluated_examples_<model_name>_<yyyy_MM_dd'T'HH_mm_ss_SSS'Z'>.evaluated_examples
    #[prost(string, tag = "1")]
    pub destination_bigquery_uri: ::prost::alloc::string::String,
    /// If true and an export destination is specified, then the contents of the
    /// destination are overwritten. Otherwise, if the export destination already
    /// exists, then the export operation fails.
    #[prost(bool, tag = "2")]
    pub override_existing_table: bool,
}
/// A TrainingJob that trains and uploads an AutoML Video Action Recognition
/// Model.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlVideoActionRecognition {
    /// The input parameters of this TrainingJob.
    #[prost(message, optional, tag = "1")]
    pub inputs: ::core::option::Option<AutoMlVideoActionRecognitionInputs>,
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlVideoActionRecognitionInputs {
    #[prost(
        enumeration = "auto_ml_video_action_recognition_inputs::ModelType",
        tag = "1"
    )]
    pub model_type: i32,
}
/// Nested message and enum types in `AutoMlVideoActionRecognitionInputs`.
pub mod auto_ml_video_action_recognition_inputs {
    #[derive(
        Clone,
        Copy,
        Debug,
        PartialEq,
        Eq,
        Hash,
        PartialOrd,
        Ord,
        ::prost::Enumeration
    )]
    #[repr(i32)]
    pub enum ModelType {
        /// Should not be set.
        Unspecified = 0,
        /// A model best tailored to be used within Google Cloud, and which c annot
        /// be exported. Default.
        Cloud = 1,
        /// A model that, in addition to being available within Google Cloud, can
        /// also be exported (see ModelService.ExportModel) as a TensorFlow or
        /// TensorFlow Lite model and used on a mobile or edge device afterwards.
        MobileVersatile1 = 2,
        /// A model that, in addition to being available within Google Cloud, can
        /// also be exported (see ModelService.ExportModel) to a Jetson device
        /// afterwards.
        MobileJetsonVersatile1 = 3,
        /// A model that, in addition to being available within Google Cloud, can
        /// also be exported (see ModelService.ExportModel) as a TensorFlow or
        /// TensorFlow Lite model and used on a Coral device afterwards.
        MobileCoralVersatile1 = 4,
    }
    impl ModelType {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                ModelType::Unspecified => "MODEL_TYPE_UNSPECIFIED",
                ModelType::Cloud => "CLOUD",
                ModelType::MobileVersatile1 => "MOBILE_VERSATILE_1",
                ModelType::MobileJetsonVersatile1 => "MOBILE_JETSON_VERSATILE_1",
                ModelType::MobileCoralVersatile1 => "MOBILE_CORAL_VERSATILE_1",
            }
        }
        /// Creates an enum from field names used in the ProtoBuf definition.
        pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
            match value {
                "MODEL_TYPE_UNSPECIFIED" => Some(Self::Unspecified),
                "CLOUD" => Some(Self::Cloud),
                "MOBILE_VERSATILE_1" => Some(Self::MobileVersatile1),
                "MOBILE_JETSON_VERSATILE_1" => Some(Self::MobileJetsonVersatile1),
                "MOBILE_CORAL_VERSATILE_1" => Some(Self::MobileCoralVersatile1),
                _ => None,
            }
        }
    }
}
/// A TrainingJob that trains and uploads an AutoML Forecasting Model.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AutoMlForecasting {
    /// The input parameters of this TrainingJob.
    #[prost(message, optional, tag = "1")]
    pub inputs: ::core::option::Option<AutoMlForecastingInputs>,
    /// The metadata information.
    #[prost(message, optional, tag = "2")]
    pub metadata: ::core::option::Option<AutoMlForecastingMetadata>,
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AutoMlForecastingInputs {
    /// The name of the column that the model is to predict.
    #[prost(string, tag = "1")]
    pub target_column: ::prost::alloc::string::String,
    /// The name of the column that identifies the time series.
    #[prost(string, tag = "2")]
    pub time_series_identifier_column: ::prost::alloc::string::String,
    /// The name of the column that identifies time order in the time series.
    #[prost(string, tag = "3")]
    pub time_column: ::prost::alloc::string::String,
    /// Each transformation will apply transform function to given input column.
    /// And the result will be used for training.
    /// When creating transformation for BigQuery Struct column, the column should
    /// be flattened using "." as the delimiter.
    #[prost(message, repeated, tag = "4")]
    pub transformations: ::prost::alloc::vec::Vec<
        auto_ml_forecasting_inputs::Transformation,
    >,
    /// Objective function the model is optimizing towards. The training process
    /// creates a model that optimizes the value of the objective
    /// function over the validation set.
    ///
    /// The supported optimization objectives:
    ///
    ///    * "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE).
    ///
    ///    * "minimize-mae" - Minimize mean-absolute error (MAE).
    ///
    ///    * "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
    ///
    ///    * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE).
    ///
    ///    * "minimize-wape-mae" - Minimize the combination of weighted absolute
    ///      percentage error (WAPE) and mean-absolute-error (MAE).
    ///
    ///    * "minimize-quantile-loss" - Minimize the quantile loss at the quantiles
    ///      defined in `quantiles`.
    #[prost(string, tag = "5")]
    pub optimization_objective: ::prost::alloc::string::String,
    /// Required. The train budget of creating this model, expressed in milli node
    /// hours i.e. 1,000 value in this field means 1 node hour.
    ///
    /// The training cost of the model will not exceed this budget. The final cost
    /// will be attempted to be close to the budget, though may end up being (even)
    /// noticeably smaller - at the backend's discretion. This especially may
    /// happen when further model training ceases to provide any improvements.
    ///
    /// If the budget is set to a value known to be insufficient to train a
    /// model for the given dataset, the training won't be attempted and
    /// will error.
    ///
    /// The train budget must be between 1,000 and 72,000 milli node hours,
    /// inclusive.
    #[prost(int64, tag = "6")]
    pub train_budget_milli_node_hours: i64,
    /// Column name that should be used as the weight column.
    /// Higher values in this column give more importance to the row
    /// during model training. The column must have numeric values between 0 and
    /// 10000 inclusively; 0 means the row is ignored for training. If weight
    /// column field is not set, then all rows are assumed to have equal weight
    /// of 1.
    #[prost(string, tag = "7")]
    pub weight_column: ::prost::alloc::string::String,
    /// Column names that should be used as attribute columns.
    /// The value of these columns does not vary as a function of time.
    /// For example, store ID or item color.
    #[prost(string, repeated, tag = "19")]
    pub time_series_attribute_columns: ::prost::alloc::vec::Vec<
        ::prost::alloc::string::String,
    >,
    /// Names of columns that are unavailable when a forecast is requested.
    /// This column contains information for the given entity (identified
    /// by the time_series_identifier_column) that is unknown before the forecast
    /// For example, actual weather on a given day.
    #[prost(string, repeated, tag = "20")]
    pub unavailable_at_forecast_columns: ::prost::alloc::vec::Vec<
        ::prost::alloc::string::String,
    >,
    /// Names of columns that are available and provided when a forecast
    /// is requested. These columns
    /// contain information for the given entity (identified by the
    /// time_series_identifier_column column) that is known at forecast.
    /// For example, predicted weather for a specific day.
    #[prost(string, repeated, tag = "21")]
    pub available_at_forecast_columns: ::prost::alloc::vec::Vec<
        ::prost::alloc::string::String,
    >,
    /// Expected difference in time granularity between rows in the data.
    #[prost(message, optional, tag = "22")]
    pub data_granularity: ::core::option::Option<
        auto_ml_forecasting_inputs::Granularity,
    >,
    /// The amount of time into the future for which forecasted values for the
    /// target are returned. Expressed in number of units defined by the
    /// `data_granularity` field.
    #[prost(int64, tag = "23")]
    pub forecast_horizon: i64,
    /// The amount of time into the past training and prediction data is used
    /// for model training and prediction respectively. Expressed in number of
    /// units defined by the `data_granularity` field.
    #[prost(int64, tag = "24")]
    pub context_window: i64,
    /// Configuration for exporting test set predictions to a BigQuery table. If
    /// this configuration is absent, then the export is not performed.
    #[prost(message, optional, tag = "15")]
    pub export_evaluated_data_items_config: ::core::option::Option<
        ExportEvaluatedDataItemsConfig,
    >,
    /// Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to
    /// 5 quantiles are allowed of values between 0 and 1, exclusive. Required if
    /// the value of optimization_objective is minimize-quantile-loss. Represents
    /// the percent quantiles to use for that objective. Quantiles must be unique.
    #[prost(double, repeated, tag = "16")]
    pub quantiles: ::prost::alloc::vec::Vec<f64>,
    /// Validation options for the data validation component. The available options
    /// are:
    ///
    ///    * "fail-pipeline" - default, will validate against the validation and
    ///       fail the pipeline if it fails.
    ///
    ///    * "ignore-validation" - ignore the results of the validation and continue
    #[prost(string, tag = "17")]
    pub validation_options: ::prost::alloc::string::String,
    /// Additional experiment flags for the time series forcasting training.
    #[prost(string, repeated, tag = "25")]
    pub additional_experiments: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
}
/// Nested message and enum types in `AutoMlForecastingInputs`.
pub mod auto_ml_forecasting_inputs {
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct Transformation {
        /// The transformation that the training pipeline will apply to the input
        /// columns.
        #[prost(oneof = "transformation::TransformationDetail", tags = "1, 2, 3, 4, 5")]
        pub transformation_detail: ::core::option::Option<
            transformation::TransformationDetail,
        >,
    }
    /// Nested message and enum types in `Transformation`.
    pub mod transformation {
        /// Training pipeline will infer the proper transformation based on the
        /// statistic of dataset.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct AutoTransformation {
            #[prost(string, tag = "1")]
            pub column_name: ::prost::alloc::string::String,
        }
        /// Training pipeline will perform following transformation functions.
        ///
        /// *  The value converted to float32.
        ///
        /// *  The z_score of the value.
        ///
        /// *  log(value+1) when the value is greater than or equal to 0. Otherwise,
        ///     this transformation is not applied and the value is considered a
        ///     missing value.
        ///
        /// *  z_score of log(value+1) when the value is greater than or equal to 0.
        ///     Otherwise, this transformation is not applied and the value is
        ///     considered a missing value.
        ///
        /// *  A boolean value that indicates whether the value is valid.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct NumericTransformation {
            #[prost(string, tag = "1")]
            pub column_name: ::prost::alloc::string::String,
        }
        /// Training pipeline will perform following transformation functions.
        ///
        /// *  The categorical string as is--no change to case, punctuation,
        ///     spelling, tense, and so on.
        ///
        /// *  Convert the category name to a dictionary lookup index and generate an
        ///     embedding for each index.
        ///
        /// *  Categories that appear less than 5 times in the training dataset are
        ///     treated as the "unknown" category. The "unknown" category gets its own
        ///     special lookup index and resulting embedding.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct CategoricalTransformation {
            #[prost(string, tag = "1")]
            pub column_name: ::prost::alloc::string::String,
        }
        /// Training pipeline will perform following transformation functions.
        ///
        /// *  Apply the transformation functions for Numerical columns.
        ///
        /// *  Determine the year, month, day,and weekday. Treat each value from the
        ///     timestamp as a Categorical column.
        ///
        /// *  Invalid numerical values (for example, values that fall outside of a
        ///     typical timestamp range, or are extreme values) receive no special
        ///     treatment and are not removed.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct TimestampTransformation {
            #[prost(string, tag = "1")]
            pub column_name: ::prost::alloc::string::String,
            /// The format in which that time field is expressed. The time_format must
            /// either be one of:
            ///
            /// * `unix-seconds`
            ///
            /// * `unix-milliseconds`
            ///
            /// * `unix-microseconds`
            ///
            /// * `unix-nanoseconds`
            ///
            /// (for respectively number of seconds, milliseconds, microseconds and
            /// nanoseconds since start of the Unix epoch);
            ///
            /// or be written in `strftime` syntax.
            ///
            /// If time_format is not set, then the
            /// default format is RFC 3339 `date-time` format, where
            /// `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z)
            #[prost(string, tag = "2")]
            pub time_format: ::prost::alloc::string::String,
        }
        /// Training pipeline will perform following transformation functions.
        ///
        /// *  The text as is--no change to case, punctuation, spelling, tense, and
        ///     so on.
        ///
        /// *  Convert the category name to a dictionary lookup index and generate an
        ///     embedding for each index.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct TextTransformation {
            #[prost(string, tag = "1")]
            pub column_name: ::prost::alloc::string::String,
        }
        /// The transformation that the training pipeline will apply to the input
        /// columns.
        #[derive(Clone, PartialEq, ::prost::Oneof)]
        pub enum TransformationDetail {
            #[prost(message, tag = "1")]
            Auto(AutoTransformation),
            #[prost(message, tag = "2")]
            Numeric(NumericTransformation),
            #[prost(message, tag = "3")]
            Categorical(CategoricalTransformation),
            #[prost(message, tag = "4")]
            Timestamp(TimestampTransformation),
            #[prost(message, tag = "5")]
            Text(TextTransformation),
        }
    }
    /// A duration of time expressed in time granularity units.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct Granularity {
        /// The time granularity unit of this time period.
        /// The supported units are:
        ///
        ///   * "minute"
        ///
        ///   * "hour"
        ///
        ///   * "day"
        ///
        ///   * "week"
        ///
        ///   * "month"
        ///
        ///   * "year"
        #[prost(string, tag = "1")]
        pub unit: ::prost::alloc::string::String,
        /// The number of granularity_units between data points in the training
        /// data. If `granularity_unit` is `minute`,
        /// can be 1, 5, 10, 15, or 30. For all other values of `granularity_unit`,
        /// must be 1.
        #[prost(int64, tag = "2")]
        pub quantity: i64,
    }
}
/// Model metadata specific to AutoML Forecasting.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlForecastingMetadata {
    /// Output only. The actual training cost of the model, expressed in milli
    /// node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
    /// to not exceed the train budget.
    #[prost(int64, tag = "1")]
    pub train_cost_milli_node_hours: i64,
}
/// A TrainingJob that trains and uploads an AutoML Tables Model.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AutoMlTables {
    /// The input parameters of this TrainingJob.
    #[prost(message, optional, tag = "1")]
    pub inputs: ::core::option::Option<AutoMlTablesInputs>,
    /// The metadata information.
    #[prost(message, optional, tag = "2")]
    pub metadata: ::core::option::Option<AutoMlTablesMetadata>,
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AutoMlTablesInputs {
    /// The type of prediction the Model is to produce.
    ///    "classification" - Predict one out of multiple target values is
    ///                       picked for each row.
    ///    "regression" - Predict a value based on its relation to other values.
    ///                   This type is available only to columns that contain
    ///                   semantically numeric values, i.e. integers or floating
    ///                   point number, even if stored as e.g. strings.
    #[prost(string, tag = "1")]
    pub prediction_type: ::prost::alloc::string::String,
    /// The column name of the target column that the model is to predict.
    #[prost(string, tag = "2")]
    pub target_column: ::prost::alloc::string::String,
    /// Each transformation will apply transform function to given input column.
    /// And the result will be used for training.
    /// When creating transformation for BigQuery Struct column, the column should
    /// be flattened using "." as the delimiter.
    #[prost(message, repeated, tag = "3")]
    pub transformations: ::prost::alloc::vec::Vec<auto_ml_tables_inputs::Transformation>,
    /// Objective function the model is optimizing towards. The training process
    /// creates a model that maximizes/minimizes the value of the objective
    /// function over the validation set.
    ///
    /// The supported optimization objectives depend on the prediction type.
    /// If the field is not set, a default objective function is used.
    ///
    /// classification (binary):
    ///    "maximize-au-roc" (default) - Maximize the area under the receiver
    ///                                  operating characteristic (ROC) curve.
    ///    "minimize-log-loss" - Minimize log loss.
    ///    "maximize-au-prc" - Maximize the area under the precision-recall curve.
    ///    "maximize-precision-at-recall" - Maximize precision for a specified
    ///                                    recall value.
    ///    "maximize-recall-at-precision" - Maximize recall for a specified
    ///                                     precision value.
    ///
    /// classification (multi-class):
    ///    "minimize-log-loss" (default) - Minimize log loss.
    ///
    /// regression:
    ///    "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE).
    ///    "minimize-mae" - Minimize mean-absolute error (MAE).
    ///    "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
    #[prost(string, tag = "4")]
    pub optimization_objective: ::prost::alloc::string::String,
    /// Required. The train budget of creating this model, expressed in milli node
    /// hours i.e. 1,000 value in this field means 1 node hour.
    ///
    /// The training cost of the model will not exceed this budget. The final cost
    /// will be attempted to be close to the budget, though may end up being (even)
    /// noticeably smaller - at the backend's discretion. This especially may
    /// happen when further model training ceases to provide any improvements.
    ///
    /// If the budget is set to a value known to be insufficient to train a
    /// model for the given dataset, the training won't be attempted and
    /// will error.
    ///
    /// The train budget must be between 1,000 and 72,000 milli node hours,
    /// inclusive.
    #[prost(int64, tag = "7")]
    pub train_budget_milli_node_hours: i64,
    /// Use the entire training budget. This disables the early stopping feature.
    /// By default, the early stopping feature is enabled, which means that AutoML
    /// Tables might stop training before the entire training budget has been used.
    #[prost(bool, tag = "8")]
    pub disable_early_stopping: bool,
    /// Column name that should be used as the weight column.
    /// Higher values in this column give more importance to the row
    /// during model training. The column must have numeric values between 0 and
    /// 10000 inclusively; 0 means the row is ignored for training. If weight
    /// column field is not set, then all rows are assumed to have equal weight
    /// of 1.
    #[prost(string, tag = "9")]
    pub weight_column_name: ::prost::alloc::string::String,
    /// Configuration for exporting test set predictions to a BigQuery table. If
    /// this configuration is absent, then the export is not performed.
    #[prost(message, optional, tag = "10")]
    pub export_evaluated_data_items_config: ::core::option::Option<
        ExportEvaluatedDataItemsConfig,
    >,
    /// Additional experiment flags for the Tables training pipeline.
    #[prost(string, repeated, tag = "11")]
    pub additional_experiments: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
    /// Additional optimization objective configuration. Required for
    /// `maximize-precision-at-recall` and `maximize-recall-at-precision`,
    /// otherwise unused.
    #[prost(
        oneof = "auto_ml_tables_inputs::AdditionalOptimizationObjectiveConfig",
        tags = "5, 6"
    )]
    pub additional_optimization_objective_config: ::core::option::Option<
        auto_ml_tables_inputs::AdditionalOptimizationObjectiveConfig,
    >,
}
/// Nested message and enum types in `AutoMlTablesInputs`.
pub mod auto_ml_tables_inputs {
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct Transformation {
        /// The transformation that the training pipeline will apply to the input
        /// columns.
        #[prost(
            oneof = "transformation::TransformationDetail",
            tags = "1, 2, 3, 4, 5, 6, 7, 8"
        )]
        pub transformation_detail: ::core::option::Option<
            transformation::TransformationDetail,
        >,
    }
    /// Nested message and enum types in `Transformation`.
    pub mod transformation {
        /// Training pipeline will infer the proper transformation based on the
        /// statistic of dataset.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct AutoTransformation {
            #[prost(string, tag = "1")]
            pub column_name: ::prost::alloc::string::String,
        }
        /// Training pipeline will perform following transformation functions.
        /// *  The value converted to float32.
        /// *  The z_score of the value.
        /// *  log(value+1) when the value is greater than or equal to 0. Otherwise,
        ///     this transformation is not applied and the value is considered a
        ///     missing value.
        /// *  z_score of log(value+1) when the value is greater than or equal to 0.
        ///     Otherwise, this transformation is not applied and the value is
        ///     considered a missing value.
        /// *  A boolean value that indicates whether the value is valid.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct NumericTransformation {
            #[prost(string, tag = "1")]
            pub column_name: ::prost::alloc::string::String,
            /// If invalid values is allowed, the training pipeline will create a
            /// boolean feature that indicated whether the value is valid.
            /// Otherwise, the training pipeline will discard the input row from
            /// trainining data.
            #[prost(bool, tag = "2")]
            pub invalid_values_allowed: bool,
        }
        /// Training pipeline will perform following transformation functions.
        /// *  The categorical string as is--no change to case, punctuation,
        /// spelling,
        ///     tense, and so on.
        /// *  Convert the category name to a dictionary lookup index and generate an
        ///     embedding for each index.
        /// *  Categories that appear less than 5 times in the training dataset are
        ///     treated as the "unknown" category. The "unknown" category gets its own
        ///     special lookup index and resulting embedding.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct CategoricalTransformation {
            #[prost(string, tag = "1")]
            pub column_name: ::prost::alloc::string::String,
        }
        /// Training pipeline will perform following transformation functions.
        /// *  Apply the transformation functions for Numerical columns.
        /// *  Determine the year, month, day,and weekday. Treat each value from the
        /// *  timestamp as a Categorical column.
        /// *  Invalid numerical values (for example, values that fall outside of a
        ///     typical timestamp range, or are extreme values) receive no special
        ///     treatment and are not removed.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct TimestampTransformation {
            #[prost(string, tag = "1")]
            pub column_name: ::prost::alloc::string::String,
            /// The format in which that time field is expressed. The time_format must
            /// either be one of:
            /// * `unix-seconds`
            /// * `unix-milliseconds`
            /// * `unix-microseconds`
            /// * `unix-nanoseconds`
            /// (for respectively number of seconds, milliseconds, microseconds and
            /// nanoseconds since start of the Unix epoch);
            /// or be written in `strftime` syntax. If time_format is not set, then the
            /// default format is RFC 3339 `date-time` format, where
            /// `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z)
            #[prost(string, tag = "2")]
            pub time_format: ::prost::alloc::string::String,
            /// If invalid values is allowed, the training pipeline will create a
            /// boolean feature that indicated whether the value is valid.
            /// Otherwise, the training pipeline will discard the input row from
            /// trainining data.
            #[prost(bool, tag = "3")]
            pub invalid_values_allowed: bool,
        }
        /// Training pipeline will perform following transformation functions.
        /// *  The text as is--no change to case, punctuation, spelling, tense, and
        /// so
        ///     on.
        /// *  Tokenize text to words. Convert each words to a dictionary lookup
        /// index
        ///     and generate an embedding for each index. Combine the embedding of all
        ///     elements into a single embedding using the mean.
        /// *  Tokenization is based on unicode script boundaries.
        /// *  Missing values get their own lookup index and resulting embedding.
        /// *  Stop-words receive no special treatment and are not removed.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct TextTransformation {
            #[prost(string, tag = "1")]
            pub column_name: ::prost::alloc::string::String,
        }
        /// Treats the column as numerical array and performs following
        /// transformation functions.
        /// *  All transformations for Numerical types applied to the average of the
        ///     all elements.
        /// *  The average of empty arrays is treated as zero.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct NumericArrayTransformation {
            #[prost(string, tag = "1")]
            pub column_name: ::prost::alloc::string::String,
            /// If invalid values is allowed, the training pipeline will create a
            /// boolean feature that indicated whether the value is valid.
            /// Otherwise, the training pipeline will discard the input row from
            /// trainining data.
            #[prost(bool, tag = "2")]
            pub invalid_values_allowed: bool,
        }
        /// Treats the column as categorical array and performs following
        /// transformation functions.
        /// *  For each element in the array, convert the category name to a
        /// dictionary
        ///     lookup index and generate an embedding for each index.
        ///     Combine the embedding of all elements into a single embedding using
        ///     the mean.
        /// *  Empty arrays treated as an embedding of zeroes.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct CategoricalArrayTransformation {
            #[prost(string, tag = "1")]
            pub column_name: ::prost::alloc::string::String,
        }
        /// Treats the column as text array and performs following transformation
        /// functions.
        /// *  Concatenate all text values in the array into a single text value
        /// using
        ///     a space (" ") as a delimiter, and then treat the result as a single
        ///     text value. Apply the transformations for Text columns.
        /// *  Empty arrays treated as an empty text.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct TextArrayTransformation {
            #[prost(string, tag = "1")]
            pub column_name: ::prost::alloc::string::String,
        }
        /// The transformation that the training pipeline will apply to the input
        /// columns.
        #[derive(Clone, PartialEq, ::prost::Oneof)]
        pub enum TransformationDetail {
            #[prost(message, tag = "1")]
            Auto(AutoTransformation),
            #[prost(message, tag = "2")]
            Numeric(NumericTransformation),
            #[prost(message, tag = "3")]
            Categorical(CategoricalTransformation),
            #[prost(message, tag = "4")]
            Timestamp(TimestampTransformation),
            #[prost(message, tag = "5")]
            Text(TextTransformation),
            #[prost(message, tag = "6")]
            RepeatedNumeric(NumericArrayTransformation),
            #[prost(message, tag = "7")]
            RepeatedCategorical(CategoricalArrayTransformation),
            #[prost(message, tag = "8")]
            RepeatedText(TextArrayTransformation),
        }
    }
    /// Additional optimization objective configuration. Required for
    /// `maximize-precision-at-recall` and `maximize-recall-at-precision`,
    /// otherwise unused.
    #[derive(Clone, Copy, PartialEq, ::prost::Oneof)]
    pub enum AdditionalOptimizationObjectiveConfig {
        /// Required when optimization_objective is "maximize-precision-at-recall".
        /// Must be between 0 and 1, inclusive.
        #[prost(float, tag = "5")]
        OptimizationObjectiveRecallValue(f32),
        /// Required when optimization_objective is "maximize-recall-at-precision".
        /// Must be between 0 and 1, inclusive.
        #[prost(float, tag = "6")]
        OptimizationObjectivePrecisionValue(f32),
    }
}
/// Model metadata specific to AutoML Tables.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct AutoMlTablesMetadata {
    /// Output only. The actual training cost of the model, expressed in milli
    /// node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
    /// to not exceed the train budget.
    #[prost(int64, tag = "1")]
    pub train_cost_milli_node_hours: i64,
}