pub struct ImageObjectDetectionModelMetadata {
pub model_type: String,
pub node_count: i64,
pub node_qps: f64,
pub stop_reason: String,
pub train_budget_milli_node_hours: i64,
pub train_cost_milli_node_hours: i64,
}
Expand description
Model metadata specific to image object detection.
Fields§
§model_type: String
Optional. Type of the model. The available values are:
cloud-high-accuracy-1
- (default) A model to be used via prediction calls to AutoML API. Expected to have a higher latency, but should also have a higher prediction quality than other models.cloud-low-latency-1
- A model to be used via prediction calls to AutoML API. Expected to have low latency, but may have lower prediction quality than other models.mobile-low-latency-1
- A model that, in addition to providing prediction via AutoML API, can also be exported (see [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device with TensorFlow afterwards. Expected to have low latency, but may have lower prediction quality than other models.mobile-versatile-1
- A model that, in addition to providing prediction via AutoML API, can also be exported (see [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device with TensorFlow afterwards.mobile-high-accuracy-1
- A model that, in addition to providing prediction via AutoML API, can also be exported (see [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device with TensorFlow afterwards. Expected to have a higher latency, but should also have a higher prediction quality than other models.
node_count: i64
Output only. The number of nodes this model is deployed on. A node is an abstraction of a machine resource, which can handle online prediction QPS as given in the qps_per_node field.
node_qps: f64
Output only. An approximate number of online prediction QPS that can be supported by this model per each node on which it is deployed.
stop_reason: String
Output only. The reason that this create model operation stopped,
e.g. BUDGET_REACHED
, MODEL_CONVERGED
.
train_budget_milli_node_hours: i64
The train budget of creating this model, expressed in milli node
hours i.e. 1,000 value in this field means 1 node hour. The actual
train_cost
will be equal or less than this value. If further model
training ceases to provide any improvements, it will stop without using
full budget and the stop_reason will be MODEL_CONVERGED
.
Note, node_hour = actual_hour * number_of_nodes_invovled.
For model type cloud-high-accuracy-1
(default) and cloud-low-latency-1
,
the train budget must be between 20,000 and 900,000 milli node hours,
inclusive. The default value is 216, 000 which represents one day in
wall time.
For model type mobile-low-latency-1
, mobile-versatile-1
,
mobile-high-accuracy-1
, mobile-core-ml-low-latency-1
,
mobile-core-ml-versatile-1
, mobile-core-ml-high-accuracy-1
, the train
budget must be between 1,000 and 100,000 milli node hours, inclusive.
The default value is 24, 000 which represents one day in wall time.
train_cost_milli_node_hours: i64
Output only. The actual train cost of creating this model, expressed in milli node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed to not exceed the train budget.
Trait Implementations§
source§impl Clone for ImageObjectDetectionModelMetadata
impl Clone for ImageObjectDetectionModelMetadata
source§fn clone(&self) -> ImageObjectDetectionModelMetadata
fn clone(&self) -> ImageObjectDetectionModelMetadata
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Message for ImageObjectDetectionModelMetadata
impl Message for ImageObjectDetectionModelMetadata
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
.source§impl PartialEq for ImageObjectDetectionModelMetadata
impl PartialEq for ImageObjectDetectionModelMetadata
source§fn eq(&self, other: &ImageObjectDetectionModelMetadata) -> bool
fn eq(&self, other: &ImageObjectDetectionModelMetadata) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for ImageObjectDetectionModelMetadata
Auto Trait Implementations§
impl Freeze for ImageObjectDetectionModelMetadata
impl RefUnwindSafe for ImageObjectDetectionModelMetadata
impl Send for ImageObjectDetectionModelMetadata
impl Sync for ImageObjectDetectionModelMetadata
impl Unpin for ImageObjectDetectionModelMetadata
impl UnwindSafe for ImageObjectDetectionModelMetadata
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request