1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
// This file is @generated by prost-build.
/// A time period inside of an example that has a time dimension (e.g. video).
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TimeSegment {
    /// Start of the time segment (inclusive), represented as the duration since
    /// the example start.
    #[prost(message, optional, tag = "1")]
    pub start_time_offset: ::core::option::Option<::prost_types::Duration>,
    /// End of the time segment (exclusive), represented as the duration since the
    /// example start.
    #[prost(message, optional, tag = "2")]
    pub end_time_offset: ::core::option::Option<::prost_types::Duration>,
}
/// Contains annotation details specific to classification.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct ClassificationAnnotation {
    /// Output only. A confidence estimate between 0.0 and 1.0. A higher value
    /// means greater confidence that the annotation is positive. If a user
    /// approves an annotation as negative or positive, the score value remains
    /// unchanged. If a user creates an annotation, the score is 0 for negative or
    /// 1 for positive.
    #[prost(float, tag = "1")]
    pub score: f32,
}
/// Contains annotation details specific to video classification.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct VideoClassificationAnnotation {
    /// Output only. Expresses the type of video classification. Possible values:
    ///
    /// *  `segment` - Classification done on a specified by user
    ///         time segment of a video. AnnotationSpec is answered to be present
    ///         in that time segment, if it is present in any part of it. The video
    ///         ML model evaluations are done only for this type of classification.
    ///
    /// *  `shot`- Shot-level classification.
    ///         AutoML Video Intelligence determines the boundaries
    ///         for each camera shot in the entire segment of the video that user
    ///         specified in the request configuration. AutoML Video Intelligence
    ///         then returns labels and their confidence scores for each detected
    ///         shot, along with the start and end time of the shot.
    ///         WARNING: Model evaluation is not done for this classification type,
    ///         the quality of it depends on training data, but there are no
    ///         metrics provided to describe that quality.
    ///
    /// *  `1s_interval` - AutoML Video Intelligence returns labels and their
    ///         confidence scores for each second of the entire segment of the video
    ///         that user specified in the request configuration.
    ///         WARNING: Model evaluation is not done for this classification type,
    ///         the quality of it depends on training data, but there are no
    ///         metrics provided to describe that quality.
    #[prost(string, tag = "1")]
    pub r#type: ::prost::alloc::string::String,
    /// Output only . The classification details of this annotation.
    #[prost(message, optional, tag = "2")]
    pub classification_annotation: ::core::option::Option<ClassificationAnnotation>,
    /// Output only . The time segment of the video to which the
    /// annotation applies.
    #[prost(message, optional, tag = "3")]
    pub time_segment: ::core::option::Option<TimeSegment>,
}
/// Model evaluation metrics for classification problems.
/// Note: For Video Classification this metrics only describe quality of the
/// Video Classification predictions of "segment_classification" type.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ClassificationEvaluationMetrics {
    /// Output only. The Area Under Precision-Recall Curve metric. Micro-averaged
    /// for the overall evaluation.
    #[prost(float, tag = "1")]
    pub au_prc: f32,
    /// Output only. The Area Under Precision-Recall Curve metric based on priors.
    /// Micro-averaged for the overall evaluation.
    /// Deprecated.
    #[deprecated]
    #[prost(float, tag = "2")]
    pub base_au_prc: f32,
    /// Output only. The Area Under Receiver Operating Characteristic curve metric.
    /// Micro-averaged for the overall evaluation.
    #[prost(float, tag = "6")]
    pub au_roc: f32,
    /// Output only. The Log Loss metric.
    #[prost(float, tag = "7")]
    pub log_loss: f32,
    /// Output only. Metrics for each confidence_threshold in
    /// 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
    /// position_threshold = INT32_MAX_VALUE.
    /// ROC and precision-recall curves, and other aggregated metrics are derived
    /// from them. The confidence metrics entries may also be supplied for
    /// additional values of position_threshold, but from these no aggregated
    /// metrics are computed.
    #[prost(message, repeated, tag = "3")]
    pub confidence_metrics_entry: ::prost::alloc::vec::Vec<
        classification_evaluation_metrics::ConfidenceMetricsEntry,
    >,
    /// Output only. Confusion matrix of the evaluation.
    /// Only set for MULTICLASS classification problems where number
    /// of labels is no more than 10.
    /// Only set for model level evaluation, not for evaluation per label.
    #[prost(message, optional, tag = "4")]
    pub confusion_matrix: ::core::option::Option<
        classification_evaluation_metrics::ConfusionMatrix,
    >,
    /// Output only. The annotation spec ids used for this evaluation.
    #[prost(string, repeated, tag = "5")]
    pub annotation_spec_id: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
}
/// Nested message and enum types in `ClassificationEvaluationMetrics`.
pub mod classification_evaluation_metrics {
    /// Metrics for a single confidence threshold.
    #[derive(Clone, Copy, PartialEq, ::prost::Message)]
    pub struct ConfidenceMetricsEntry {
        /// Output only. Metrics are computed with an assumption that the model
        /// never returns predictions with score lower than this value.
        #[prost(float, tag = "1")]
        pub confidence_threshold: f32,
        /// Output only. Metrics are computed with an assumption that the model
        /// always returns at most this many predictions (ordered by their score,
        /// descendingly), but they all still need to meet the confidence_threshold.
        #[prost(int32, tag = "14")]
        pub position_threshold: i32,
        /// Output only. Recall (True Positive Rate) for the given confidence
        /// threshold.
        #[prost(float, tag = "2")]
        pub recall: f32,
        /// Output only. Precision for the given confidence threshold.
        #[prost(float, tag = "3")]
        pub precision: f32,
        /// Output only. False Positive Rate for the given confidence threshold.
        #[prost(float, tag = "8")]
        pub false_positive_rate: f32,
        /// Output only. The harmonic mean of recall and precision.
        #[prost(float, tag = "4")]
        pub f1_score: f32,
        /// Output only. The Recall (True Positive Rate) when only considering the
        /// label that has the highest prediction score and not below the confidence
        /// threshold for each example.
        #[prost(float, tag = "5")]
        pub recall_at1: f32,
        /// Output only. The precision when only considering the label that has the
        /// highest prediction score and not below the confidence threshold for each
        /// example.
        #[prost(float, tag = "6")]
        pub precision_at1: f32,
        /// Output only. The False Positive Rate when only considering the label that
        /// has the highest prediction score and not below the confidence threshold
        /// for each example.
        #[prost(float, tag = "9")]
        pub false_positive_rate_at1: f32,
        /// Output only. The harmonic mean of [recall_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1].
        #[prost(float, tag = "7")]
        pub f1_score_at1: f32,
        /// Output only. The number of model created labels that match a ground truth
        /// label.
        #[prost(int64, tag = "10")]
        pub true_positive_count: i64,
        /// Output only. The number of model created labels that do not match a
        /// ground truth label.
        #[prost(int64, tag = "11")]
        pub false_positive_count: i64,
        /// Output only. The number of ground truth labels that are not matched
        /// by a model created label.
        #[prost(int64, tag = "12")]
        pub false_negative_count: i64,
        /// Output only. The number of labels that were not created by the model,
        /// but if they would, they would not match a ground truth label.
        #[prost(int64, tag = "13")]
        pub true_negative_count: i64,
    }
    /// Confusion matrix of the model running the classification.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct ConfusionMatrix {
        /// Output only. IDs of the annotation specs used in the confusion matrix.
        /// For Tables CLASSIFICATION
        ///
        /// [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
        /// only list of [annotation_spec_display_name-s][] is populated.
        #[prost(string, repeated, tag = "1")]
        pub annotation_spec_id: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
        /// Output only. Display name of the annotation specs used in the confusion
        /// matrix, as they were at the moment of the evaluation. For Tables
        /// CLASSIFICATION
        ///
        /// [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
        /// distinct values of the target column at the moment of the model
        /// evaluation are populated here.
        #[prost(string, repeated, tag = "3")]
        pub display_name: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
        /// Output only. Rows in the confusion matrix. The number of rows is equal to
        /// the size of `annotation_spec_id`.
        /// `row\[i\].example_count\[j\]` is the number of examples that have ground
        /// truth of the `annotation_spec_id\[i\]` and are predicted as
        /// `annotation_spec_id\[j\]` by the model being evaluated.
        #[prost(message, repeated, tag = "2")]
        pub row: ::prost::alloc::vec::Vec<confusion_matrix::Row>,
    }
    /// Nested message and enum types in `ConfusionMatrix`.
    pub mod confusion_matrix {
        /// Output only. A row in the confusion matrix.
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct Row {
            /// Output only. Value of the specific cell in the confusion matrix.
            /// The number of values each row has (i.e. the length of the row) is equal
            /// to the length of the `annotation_spec_id` field or, if that one is not
            /// populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
            #[prost(int32, repeated, tag = "1")]
            pub example_count: ::prost::alloc::vec::Vec<i32>,
        }
    }
}
/// Type of the classification problem.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
#[repr(i32)]
pub enum ClassificationType {
    /// An un-set value of this enum.
    Unspecified = 0,
    /// At most one label is allowed per example.
    Multiclass = 1,
    /// Multiple labels are allowed for one example.
    Multilabel = 2,
}
impl ClassificationType {
    /// String value of the enum field names used in the ProtoBuf definition.
    ///
    /// The values are not transformed in any way and thus are considered stable
    /// (if the ProtoBuf definition does not change) and safe for programmatic use.
    pub fn as_str_name(&self) -> &'static str {
        match self {
            ClassificationType::Unspecified => "CLASSIFICATION_TYPE_UNSPECIFIED",
            ClassificationType::Multiclass => "MULTICLASS",
            ClassificationType::Multilabel => "MULTILABEL",
        }
    }
    /// Creates an enum from field names used in the ProtoBuf definition.
    pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
        match value {
            "CLASSIFICATION_TYPE_UNSPECIFIED" => Some(Self::Unspecified),
            "MULTICLASS" => Some(Self::Multiclass),
            "MULTILABEL" => Some(Self::Multilabel),
            _ => None,
        }
    }
}
/// Dataset metadata specific to video classification.
/// All Video Classification datasets are treated as multi label.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct VideoClassificationDatasetMetadata {}
/// Dataset metadata specific to video object tracking.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct VideoObjectTrackingDatasetMetadata {}
/// Model metadata specific to video classification.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct VideoClassificationModelMetadata {}
/// Model metadata specific to video object tracking.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct VideoObjectTrackingModelMetadata {}
/// A vertex represents a 2D point in the image.
/// The normalized vertex coordinates are between 0 to 1 fractions relative to
/// the original plane (image, video). E.g. if the plane (e.g. whole image) would
/// have size 10 x 20 then a point with normalized coordinates (0.1, 0.3) would
/// be at the position (1, 6) on that plane.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct NormalizedVertex {
    /// Required. Horizontal coordinate.
    #[prost(float, tag = "1")]
    pub x: f32,
    /// Required. Vertical coordinate.
    #[prost(float, tag = "2")]
    pub y: f32,
}
/// A bounding polygon of a detected object on a plane.
/// On output both vertices and normalized_vertices are provided.
/// The polygon is formed by connecting vertices in the order they are listed.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BoundingPoly {
    /// Output only . The bounding polygon normalized vertices.
    #[prost(message, repeated, tag = "2")]
    pub normalized_vertices: ::prost::alloc::vec::Vec<NormalizedVertex>,
}
/// Annotation details for image object detection.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ImageObjectDetectionAnnotation {
    /// Output only. The rectangle representing the object location.
    #[prost(message, optional, tag = "1")]
    pub bounding_box: ::core::option::Option<BoundingPoly>,
    /// Output only. The confidence that this annotation is positive for the parent example,
    /// value in \[0, 1\], higher means higher positivity confidence.
    #[prost(float, tag = "2")]
    pub score: f32,
}
/// Annotation details for video object tracking.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct VideoObjectTrackingAnnotation {
    /// Optional. The instance of the object, expressed as a positive integer. Used to tell
    /// apart objects of the same type (i.e. AnnotationSpec) when multiple are
    /// present on a single example.
    /// NOTE: Instance ID prediction quality is not a part of model evaluation and
    /// is done as best effort. Especially in cases when an entity goes
    /// off-screen for a longer time (minutes), when it comes back it may be given
    /// a new instance ID.
    #[prost(string, tag = "1")]
    pub instance_id: ::prost::alloc::string::String,
    /// Required. A time (frame) of a video to which this annotation pertains.
    /// Represented as the duration since the video's start.
    #[prost(message, optional, tag = "2")]
    pub time_offset: ::core::option::Option<::prost_types::Duration>,
    /// Required. The rectangle representing the object location on the frame (i.e.
    /// at the time_offset of the video).
    #[prost(message, optional, tag = "3")]
    pub bounding_box: ::core::option::Option<BoundingPoly>,
    /// Output only. The confidence that this annotation is positive for the video at
    /// the time_offset, value in \[0, 1\], higher means higher positivity
    /// confidence. For annotations created by the user the score is 1. When
    /// user approves an annotation, the original float score is kept (and not
    /// changed to 1).
    #[prost(float, tag = "4")]
    pub score: f32,
}
/// Bounding box matching model metrics for a single intersection-over-union
/// threshold and multiple label match confidence thresholds.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BoundingBoxMetricsEntry {
    /// Output only. The intersection-over-union threshold value used to compute
    /// this metrics entry.
    #[prost(float, tag = "1")]
    pub iou_threshold: f32,
    /// Output only. The mean average precision, most often close to au_prc.
    #[prost(float, tag = "2")]
    pub mean_average_precision: f32,
    /// Output only. Metrics for each label-match confidence_threshold from
    /// 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99. Precision-recall curve is
    /// derived from them.
    #[prost(message, repeated, tag = "3")]
    pub confidence_metrics_entries: ::prost::alloc::vec::Vec<
        bounding_box_metrics_entry::ConfidenceMetricsEntry,
    >,
}
/// Nested message and enum types in `BoundingBoxMetricsEntry`.
pub mod bounding_box_metrics_entry {
    /// Metrics for a single confidence threshold.
    #[derive(Clone, Copy, PartialEq, ::prost::Message)]
    pub struct ConfidenceMetricsEntry {
        /// Output only. The confidence threshold value used to compute the metrics.
        #[prost(float, tag = "1")]
        pub confidence_threshold: f32,
        /// Output only. Recall under the given confidence threshold.
        #[prost(float, tag = "2")]
        pub recall: f32,
        /// Output only. Precision under the given confidence threshold.
        #[prost(float, tag = "3")]
        pub precision: f32,
        /// Output only. The harmonic mean of recall and precision.
        #[prost(float, tag = "4")]
        pub f1_score: f32,
    }
}
/// Model evaluation metrics for image object detection problems.
/// Evaluates prediction quality of labeled bounding boxes.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ImageObjectDetectionEvaluationMetrics {
    /// Output only. The total number of bounding boxes (i.e. summed over all
    /// images) the ground truth used to create this evaluation had.
    #[prost(int32, tag = "1")]
    pub evaluated_bounding_box_count: i32,
    /// Output only. The bounding boxes match metrics for each
    /// Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
    /// and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
    /// pair.
    #[prost(message, repeated, tag = "2")]
    pub bounding_box_metrics_entries: ::prost::alloc::vec::Vec<BoundingBoxMetricsEntry>,
    /// Output only. The single metric for bounding boxes evaluation:
    /// the mean_average_precision averaged over all bounding_box_metrics_entries.
    #[prost(float, tag = "3")]
    pub bounding_box_mean_average_precision: f32,
}
/// Model evaluation metrics for video object tracking problems.
/// Evaluates prediction quality of both labeled bounding boxes and labeled
/// tracks (i.e. series of bounding boxes sharing same label and instance ID).
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct VideoObjectTrackingEvaluationMetrics {
    /// Output only. The number of video frames used to create this evaluation.
    #[prost(int32, tag = "1")]
    pub evaluated_frame_count: i32,
    /// Output only. The total number of bounding boxes (i.e. summed over all
    /// frames) the ground truth used to create this evaluation had.
    #[prost(int32, tag = "2")]
    pub evaluated_bounding_box_count: i32,
    /// Output only. The bounding boxes match metrics for each
    /// Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
    /// and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
    /// pair.
    #[prost(message, repeated, tag = "4")]
    pub bounding_box_metrics_entries: ::prost::alloc::vec::Vec<BoundingBoxMetricsEntry>,
    /// Output only. The single metric for bounding boxes evaluation:
    /// the mean_average_precision averaged over all bounding_box_metrics_entries.
    #[prost(float, tag = "6")]
    pub bounding_box_mean_average_precision: f32,
}
/// Input configuration for ImportData Action.
///
/// The format of input depends on dataset_metadata the Dataset into which
/// the import is happening has. As input source the
/// [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source]
/// is expected, unless specified otherwise. Additionally any input .CSV file
/// by itself must be 100MB or smaller, unless specified otherwise.
/// If an "example" file (that is, image, video etc.) with identical content
/// (even if it had different GCS_FILE_PATH) is mentioned multiple times, then
/// its label, bounding boxes etc. are appended. The same file should be always
/// provided with the same ML_USE and GCS_FILE_PATH, if it is not, then
/// these values are nondeterministically selected from the given ones.
///
/// The formats are represented in EBNF with commas being literal and with
/// non-terminal symbols defined near the end of this comment. The formats are:
///
///   *  For Image Classification:
///          CSV file(s) with each line in format:
///            ML_USE,GCS_FILE_PATH,LABEL,LABEL,...
///            GCS_FILE_PATH leads to image of up to 30MB in size. Supported
///            extensions: .JPEG, .GIF, .PNG, .WEBP, .BMP, .TIFF, .ICO
///            For MULTICLASS classification type, at most one LABEL is allowed
///            per image. If an image has not yet been labeled, then it should be
///            mentioned just once with no LABEL.
///          Some sample rows:
///            TRAIN,gs://folder/image1.jpg,daisy
///            TEST,gs://folder/image2.jpg,dandelion,tulip,rose
///            UNASSIGNED,gs://folder/image3.jpg,daisy
///            UNASSIGNED,gs://folder/image4.jpg
///
///   *  For Image Object Detection:
///          CSV file(s) with each line in format:
///            ML_USE,GCS_FILE_PATH,(LABEL,BOUNDING_BOX | ,,,,,,,)
///            GCS_FILE_PATH leads to image of up to 30MB in size. Supported
///            extensions: .JPEG, .GIF, .PNG.
///            Each image is assumed to be exhaustively labeled. The minimum
///            allowed BOUNDING_BOX edge length is 0.01, and no more than 500
///            BOUNDING_BOX-es per image are allowed (one BOUNDING_BOX is defined
///            per line). If an image has not yet been labeled, then it should be
///            mentioned just once with no LABEL and the ",,,,,,," in place of the
///            BOUNDING_BOX. For images which are known to not contain any
///            bounding boxes, they should be labelled explictly as
///            "NEGATIVE_IMAGE", followed by ",,,,,,," in place of the
///            BOUNDING_BOX.
///          Sample rows:
///            TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,,
///            TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,,
///            UNASSIGNED,gs://folder/im2.png,car,0.1,0.1,0.2,0.1,0.2,0.3,0.1,0.3
///            TEST,gs://folder/im3.png,,,,,,,,,
///            TRAIN,gs://folder/im4.png,NEGATIVE_IMAGE,,,,,,,,,
///
///   *  For Video Classification:
///          CSV file(s) with each line in format:
///            ML_USE,GCS_FILE_PATH
///            where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH
///            should lead to another .csv file which describes examples that have
///            given ML_USE, using the following row format:
///            GCS_FILE_PATH,(LABEL,TIME_SEGMENT_START,TIME_SEGMENT_END | ,,)
///            Here GCS_FILE_PATH leads to a video of up to 50GB in size and up
///            to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
///            TIME_SEGMENT_START and TIME_SEGMENT_END must be within the
///            length of the video, and end has to be after the start. Any segment
///            of a video which has one or more labels on it, is considered a
///            hard negative for all other labels. Any segment with no labels on
///            it is considered to be unknown. If a whole video is unknown, then
///            it shuold be mentioned just once with ",," in place of LABEL,
///            TIME_SEGMENT_START,TIME_SEGMENT_END.
///          Sample top level CSV file:
///            TRAIN,gs://folder/train_videos.csv
///            TEST,gs://folder/test_videos.csv
///            UNASSIGNED,gs://folder/other_videos.csv
///          Sample rows of a CSV file for a particular ML_USE:
///            gs://folder/video1.avi,car,120,180.000021
///            gs://folder/video1.avi,bike,150,180.000021
///            gs://folder/vid2.avi,car,0,60.5
///            gs://folder/vid3.avi,,,
///
///   *  For Video Object Tracking:
///          CSV file(s) with each line in format:
///            ML_USE,GCS_FILE_PATH
///            where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH
///            should lead to another .csv file which describes examples that have
///            given ML_USE, using one of the following row format:
///            GCS_FILE_PATH,LABEL,\[INSTANCE_ID\],TIMESTAMP,BOUNDING_BOX
///            or
///            GCS_FILE_PATH,,,,,,,,,,
///            Here GCS_FILE_PATH leads to a video of up to 50GB in size and up
///            to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
///            Providing INSTANCE_IDs can help to obtain a better model. When
///            a specific labeled entity leaves the video frame, and shows up
///            afterwards it is not required, albeit preferable, that the same
///            INSTANCE_ID is given to it.
///            TIMESTAMP must be within the length of the video, the
///            BOUNDING_BOX is assumed to be drawn on the closest video's frame
///            to the TIMESTAMP. Any mentioned by the TIMESTAMP frame is expected
///            to be exhaustively labeled and no more than 500 BOUNDING_BOX-es per
///            frame are allowed. If a whole video is unknown, then it should be
///            mentioned just once with ",,,,,,,,,," in place of LABEL,
///            \[INSTANCE_ID\],TIMESTAMP,BOUNDING_BOX.
///          Sample top level CSV file:
///            TRAIN,gs://folder/train_videos.csv
///            TEST,gs://folder/test_videos.csv
///            UNASSIGNED,gs://folder/other_videos.csv
///          Seven sample rows of a CSV file for a particular ML_USE:
///            gs://folder/video1.avi,car,1,12.10,0.8,0.8,0.9,0.8,0.9,0.9,0.8,0.9
///            gs://folder/video1.avi,car,1,12.90,0.4,0.8,0.5,0.8,0.5,0.9,0.4,0.9
///            gs://folder/video1.avi,car,2,12.10,.4,.2,.5,.2,.5,.3,.4,.3
///            gs://folder/video1.avi,car,2,12.90,.8,.2,,,.9,.3,,
///            gs://folder/video1.avi,bike,,12.50,.45,.45,,,.55,.55,,
///            gs://folder/video2.avi,car,1,0,.1,.9,,,.9,.1,,
///            gs://folder/video2.avi,,,,,,,,,,,
///   *  For Text Extraction:
///          CSV file(s) with each line in format:
///            ML_USE,GCS_FILE_PATH
///            GCS_FILE_PATH leads to a .JSONL (that is, JSON Lines) file which
///            either imports text in-line or as documents. Any given
///            .JSONL file must be 100MB or smaller.
///            The in-line .JSONL file contains, per line, a proto that wraps a
///            TextSnippet proto (in json representation) followed by one or more
///            AnnotationPayload protos (called annotations), which have
///            display_name and text_extraction detail populated. The given text
///            is expected to be annotated exhaustively, for example, if you look
///            for animals and text contains "dolphin" that is not labeled, then
///            "dolphin" is assumed to not be an animal. Any given text snippet
///            content must be 10KB or smaller, and also be UTF-8 NFC encoded
///            (ASCII already is).
///            The document .JSONL file contains, per line, a proto that wraps a
///            Document proto. The Document proto must have either document_text
///            or input_config set. In document_text case, the Document proto may
///            also contain the spatial information of the document, including
///            layout, document dimension and page number. In input_config case,
///            only PDF documents are supported now, and each document may be up
///            to 2MB large. Currently, annotations on documents cannot be
///            specified at import.
///          Three sample CSV rows:
///            TRAIN,gs://folder/file1.jsonl
///            VALIDATE,gs://folder/file2.jsonl
///            TEST,gs://folder/file3.jsonl
///          Sample in-line JSON Lines file for entity extraction (presented here
///          with artificial line breaks, but the only actual line break is
///          denoted by \n).:
///            {
///              "document": {
///                "document_text": {"content": "dog cat"}
///                "layout": [
///                  {
///                    "text_segment": {
///                      "start_offset": 0,
///                      "end_offset": 3,
///                    },
///                    "page_number": 1,
///                    "bounding_poly": {
///                      "normalized_vertices": [
///                        {"x": 0.1, "y": 0.1},
///                        {"x": 0.1, "y": 0.3},
///                        {"x": 0.3, "y": 0.3},
///                        {"x": 0.3, "y": 0.1},
///                      ],
///                    },
///                    "text_segment_type": TOKEN,
///                  },
///                  {
///                    "text_segment": {
///                      "start_offset": 4,
///                      "end_offset": 7,
///                    },
///                    "page_number": 1,
///                    "bounding_poly": {
///                      "normalized_vertices": [
///                        {"x": 0.4, "y": 0.1},
///                        {"x": 0.4, "y": 0.3},
///                        {"x": 0.8, "y": 0.3},
///                        {"x": 0.8, "y": 0.1},
///                      ],
///                    },
///                    "text_segment_type": TOKEN,
///                  }
///
///                ],
///                "document_dimensions": {
///                  "width": 8.27,
///                  "height": 11.69,
///                  "unit": INCH,
///                }
///                "page_count": 1,
///              },
///              "annotations": [
///                {
///                  "display_name": "animal",
///                  "text_extraction": {"text_segment": {"start_offset": 0,
///                  "end_offset": 3}}
///                },
///                {
///                  "display_name": "animal",
///                  "text_extraction": {"text_segment": {"start_offset": 4,
///                  "end_offset": 7}}
///                }
///              ],
///            }\n
///            {
///               "text_snippet": {
///                 "content": "This dog is good."
///               },
///               "annotations": [
///                 {
///                   "display_name": "animal",
///                   "text_extraction": {
///                     "text_segment": {"start_offset": 5, "end_offset": 8}
///                   }
///                 }
///               ]
///            }
///          Sample document JSON Lines file (presented here with artificial line
///          breaks, but the only actual line break is denoted by \n).:
///            {
///              "document": {
///                "input_config": {
///                  "gcs_source": { "input_uris": \[ "gs://folder/document1.pdf" \]
///                  }
///                }
///              }
///            }\n
///            {
///              "document": {
///                "input_config": {
///                  "gcs_source": { "input_uris": \[ "gs://folder/document2.pdf" \]
///                  }
///                }
///              }
///            }
///
///   *  For Text Classification:
///          CSV file(s) with each line in format:
///            ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),LABEL,LABEL,...
///            TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If
///            the column content is a valid gcs file path, i.e. prefixed by
///            "gs://", it will be treated as a GCS_FILE_PATH, else if the content
///            is enclosed within double quotes (""), it is
///            treated as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path
///            must lead to a .txt file with UTF-8 encoding, for example,
///            "gs://folder/content.txt", and the content in it is extracted
///            as a text snippet. In TEXT_SNIPPET case, the column content
///            excluding quotes is treated as to be imported text snippet. In
///            both cases, the text snippet/file size must be within 128kB.
///            Maximum 100 unique labels are allowed per CSV row.
///          Sample rows:
///            TRAIN,"They have bad food and very rude",RudeService,BadFood
///            TRAIN,gs://folder/content.txt,SlowService
///            TEST,"Typically always bad service there.",RudeService
///            VALIDATE,"Stomach ache to go.",BadFood
///
///   *  For Text Sentiment:
///          CSV file(s) with each line in format:
///            ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),SENTIMENT
///            TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If
///            the column content is a valid gcs file path, that is, prefixed by
///            "gs://", it is treated as a GCS_FILE_PATH, otherwise it is treated
///            as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path
///            must lead to a .txt file with UTF-8 encoding, for example,
///            "gs://folder/content.txt", and the content in it is extracted
///            as a text snippet. In TEXT_SNIPPET case, the column content itself
///            is treated as to be imported text snippet. In both cases, the
///            text snippet must be up to 500 characters long.
///          Sample rows:
///            TRAIN,"@freewrytin this is way too good for your product",2
///            TRAIN,"I need this product so bad",3
///            TEST,"Thank you for this product.",4
///            VALIDATE,gs://folder/content.txt,2
///
///    *  For Tables:
///          Either
///          [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or
///
/// [bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source]
///          can be used. All inputs is concatenated into a single
///
/// [primary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_name]
///          For gcs_source:
///            CSV file(s), where the first row of the first file is the header,
///            containing unique column names. If the first row of a subsequent
///            file is the same as the header, then it is also treated as a
///            header. All other rows contain values for the corresponding
///            columns.
///            Each .CSV file by itself must be 10GB or smaller, and their total
///            size must be 100GB or smaller.
///            First three sample rows of a CSV file:
///            "Id","First Name","Last Name","Dob","Addresses"
///
/// "1","John","Doe","1968-01-22","\[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}\]"
///
/// "2","Jane","Doe","1980-10-16","\[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}\]}
///          For bigquery_source:
///            An URI of a BigQuery table. The user data size of the BigQuery
///            table must be 100GB or smaller.
///          An imported table must have between 2 and 1,000 columns, inclusive,
///          and between 1000 and 100,000,000 rows, inclusive. There are at most 5
///          import data running in parallel.
///   Definitions:
///   ML_USE = "TRAIN" | "VALIDATE" | "TEST" | "UNASSIGNED"
///            Describes how the given example (file) should be used for model
///            training. "UNASSIGNED" can be used when user has no preference.
///   GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/image1.png".
///   LABEL = A display name of an object on an image, video etc., e.g. "dog".
///           Must be up to 32 characters long and can consist only of ASCII
///           Latin letters A-Z and a-z, underscores(_), and ASCII digits 0-9.
///           For each label an AnnotationSpec is created which display_name
///           becomes the label; AnnotationSpecs are given back in predictions.
///   INSTANCE_ID = A positive integer that identifies a specific instance of a
///                 labeled entity on an example. Used e.g. to track two cars on
///                 a video while being able to tell apart which one is which.
///   BOUNDING_BOX = VERTEX,VERTEX,VERTEX,VERTEX | VERTEX,,,VERTEX,,
///                  A rectangle parallel to the frame of the example (image,
///                  video). If 4 vertices are given they are connected by edges
///                  in the order provided, if 2 are given they are recognized
///                  as diagonally opposite vertices of the rectangle.
///   VERTEX = COORDINATE,COORDINATE
///            First coordinate is horizontal (x), the second is vertical (y).
///   COORDINATE = A float in 0 to 1 range, relative to total length of
///                image or video in given dimension. For fractions the
///                leading non-decimal 0 can be omitted (i.e. 0.3 = .3).
///                Point 0,0 is in top left.
///   TIME_SEGMENT_START = TIME_OFFSET
///                        Expresses a beginning, inclusive, of a time segment
///                        within an example that has a time dimension
///                        (e.g. video).
///   TIME_SEGMENT_END = TIME_OFFSET
///                      Expresses an end, exclusive, of a time segment within
///                      an example that has a time dimension (e.g. video).
///   TIME_OFFSET = A number of seconds as measured from the start of an
///                 example (e.g. video). Fractions are allowed, up to a
///                 microsecond precision. "inf" is allowed, and it means the end
///                 of the example.
///   TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within
///                  double quotes ("").
///   SENTIMENT = An integer between 0 and
///               Dataset.text_sentiment_dataset_metadata.sentiment_max
///               (inclusive). Describes the ordinal of the sentiment - higher
///               value means a more positive sentiment. All the values are
///               completely relative, i.e. neither 0 needs to mean a negative or
///               neutral sentiment nor sentiment_max needs to mean a positive one
///               - it is just required that 0 is the least positive sentiment
///               in the data, and sentiment_max is the  most positive one.
///               The SENTIMENT shouldn't be confused with "score" or "magnitude"
///               from the previous Natural Language Sentiment Analysis API.
///               All SENTIMENT values between 0 and sentiment_max must be
///               represented in the imported data. On prediction the same 0 to
///               sentiment_max range will be used. The difference between
///               neighboring sentiment values needs not to be uniform, e.g. 1 and
///               2 may be similar whereas the difference between 2 and 3 may be
///               huge.
///
///   Errors:
///   If any of the provided CSV files can't be parsed or if more than certain
///   percent of CSV rows cannot be processed then the operation fails and
///   nothing is imported. Regardless of overall success or failure the per-row
///   failures, up to a certain count cap, is listed in
///   Operation.metadata.partial_failures.
///
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct InputConfig {
    /// Additional domain-specific parameters describing the semantic of the
    /// imported data, any string must be up to 25000
    /// characters long.
    ///
    /// *  For Tables:
    ///     `schema_inference_version` - (integer) Required. The version of the
    ///         algorithm that should be used for the initial inference of the
    ///         schema (columns' DataTypes) of the table the data is being imported
    ///         into. Allowed values: "1".
    #[prost(btree_map = "string, string", tag = "2")]
    pub params: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
    /// The source of the input.
    #[prost(oneof = "input_config::Source", tags = "1, 3")]
    pub source: ::core::option::Option<input_config::Source>,
}
/// Nested message and enum types in `InputConfig`.
pub mod input_config {
    /// The source of the input.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Source {
        /// The Google Cloud Storage location for the input content.
        /// In ImportData, the gcs_source points to a csv with structure described in
        /// the comment.
        #[prost(message, tag = "1")]
        GcsSource(super::GcsSource),
        /// The BigQuery location for the input content.
        #[prost(message, tag = "3")]
        BigquerySource(super::BigQuerySource),
    }
}
/// Input configuration for BatchPredict Action.
///
/// The format of input depends on the ML problem of the model used for
/// prediction. As input source the
/// [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source]
/// is expected, unless specified otherwise.
///
/// The formats are represented in EBNF with commas being literal and with
/// non-terminal symbols defined near the end of this comment. The formats
/// are:
///
///   *  For Image Classification:
///          CSV file(s) with each line having just a single column:
///            GCS_FILE_PATH
///            which leads to image of up to 30MB in size. Supported
///            extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in
///            the Batch predict output.
///          Three sample rows:
///            gs://folder/image1.jpeg
///            gs://folder/image2.gif
///            gs://folder/image3.png
///
///   *  For Image Object Detection:
///          CSV file(s) with each line having just a single column:
///            GCS_FILE_PATH
///            which leads to image of up to 30MB in size. Supported
///            extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in
///            the Batch predict output.
///          Three sample rows:
///            gs://folder/image1.jpeg
///            gs://folder/image2.gif
///            gs://folder/image3.png
///   *  For Video Classification:
///          CSV file(s) with each line in format:
///            GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END
///            GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h
///            duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
///            TIME_SEGMENT_START and TIME_SEGMENT_END must be within the
///            length of the video, and end has to be after the start.
///          Three sample rows:
///            gs://folder/video1.mp4,10,40
///            gs://folder/video1.mp4,20,60
///            gs://folder/vid2.mov,0,inf
///
///   *  For Video Object Tracking:
///          CSV file(s) with each line in format:
///            GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END
///            GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h
///            duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
///            TIME_SEGMENT_START and TIME_SEGMENT_END must be within the
///            length of the video, and end has to be after the start.
///          Three sample rows:
///            gs://folder/video1.mp4,10,240
///            gs://folder/video1.mp4,300,360
///            gs://folder/vid2.mov,0,inf
///   *  For Text Classification:
///          CSV file(s) with each line having just a single column:
///            GCS_FILE_PATH | TEXT_SNIPPET
///          Any given text file can have size upto 128kB.
///          Any given text snippet content must have 60,000 characters or less.
///          Three sample rows:
///            gs://folder/text1.txt
///            "Some text content to predict"
///            gs://folder/text3.pdf
///          Supported file extensions: .txt, .pdf
///
///   *  For Text Sentiment:
///          CSV file(s) with each line having just a single column:
///            GCS_FILE_PATH | TEXT_SNIPPET
///          Any given text file can have size upto 128kB.
///          Any given text snippet content must have 500 characters or less.
///          Three sample rows:
///            gs://folder/text1.txt
///            "Some text content to predict"
///            gs://folder/text3.pdf
///          Supported file extensions: .txt, .pdf
///
///   * For Text Extraction
///          .JSONL (i.e. JSON Lines) file(s) which either provide text in-line or
///          as documents (for a single BatchPredict call only one of the these
///          formats may be used).
///          The in-line .JSONL file(s) contain per line a proto that
///            wraps a temporary user-assigned TextSnippet ID (string up to 2000
///            characters long) called "id", a TextSnippet proto (in
///            json representation) and zero or more TextFeature protos. Any given
///            text snippet content must have 30,000 characters or less, and also
///            be UTF-8 NFC encoded (ASCII already is). The IDs provided should be
///            unique.
///          The document .JSONL file(s) contain, per line, a proto that wraps a
///            Document proto with input_config set. Only PDF documents are
///            supported now, and each document must be up to 2MB large.
///          Any given .JSONL file must be 100MB or smaller, and no more than 20
///          files may be given.
///          Sample in-line JSON Lines file (presented here with artificial line
///          breaks, but the only actual line break is denoted by \n):
///            {
///              "id": "my_first_id",
///              "text_snippet": { "content": "dog car cat"},
///              "text_features": [
///                {
///                  "text_segment": {"start_offset": 4, "end_offset": 6},
///                  "structural_type": PARAGRAPH,
///                  "bounding_poly": {
///                    "normalized_vertices": [
///                      {"x": 0.1, "y": 0.1},
///                      {"x": 0.1, "y": 0.3},
///                      {"x": 0.3, "y": 0.3},
///                      {"x": 0.3, "y": 0.1},
///                    ]
///                  },
///                }
///              ],
///            }\n
///            {
///              "id": "2",
///              "text_snippet": {
///                "content": "An elaborate content",
///                "mime_type": "text/plain"
///              }
///            }
///          Sample document JSON Lines file (presented here with artificial line
///          breaks, but the only actual line break is denoted by \n).:
///            {
///              "document": {
///                "input_config": {
///                  "gcs_source": { "input_uris": \[ "gs://folder/document1.pdf" \]
///                  }
///                }
///              }
///            }\n
///            {
///              "document": {
///                "input_config": {
///                  "gcs_source": { "input_uris": \[ "gs://folder/document2.pdf" \]
///                  }
///                }
///              }
///            }
///
///   *  For Tables:
///          Either
///          [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or
///
/// [bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source].
///          GCS case:
///            CSV file(s), each by itself 10GB or smaller and total size must be
///            100GB or smaller, where first file must have a header containing
///            column names. If the first row of a subsequent file is the same as
///            the header, then it is also treated as a header. All other rows
///            contain values for the corresponding columns.
///            The column names must contain the model's
///
/// [input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
///
/// [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
///            (order doesn't matter). The columns corresponding to the model's
///            input feature column specs must contain values compatible with the
///            column spec's data types. Prediction on all the rows, i.e. the CSV
///            lines, will be attempted. For FORECASTING
///
/// [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
///            all columns having
///
/// [TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]
///            type will be ignored.
///            First three sample rows of a CSV file:
///              "First Name","Last Name","Dob","Addresses"
///
/// "John","Doe","1968-01-22","\[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}\]"
///
/// "Jane","Doe","1980-10-16","\[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}\]}
///          BigQuery case:
///            An URI of a BigQuery table. The user data size of the BigQuery
///            table must be 100GB or smaller.
///            The column names must contain the model's
///
/// [input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
///
/// [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
///            (order doesn't matter). The columns corresponding to the model's
///            input feature column specs must contain values compatible with the
///            column spec's data types. Prediction on all the rows of the table
///            will be attempted. For FORECASTING
///
/// [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
///            all columns having
///
/// [TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]
///            type will be ignored.
///
///   Definitions:
///   GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/video.avi".
///   TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within
///                  double quotes ("")
///   TIME_SEGMENT_START = TIME_OFFSET
///                        Expresses a beginning, inclusive, of a time segment
///                        within an
///                        example that has a time dimension (e.g. video).
///   TIME_SEGMENT_END = TIME_OFFSET
///                      Expresses an end, exclusive, of a time segment within
///                      an example that has a time dimension (e.g. video).
///   TIME_OFFSET = A number of seconds as measured from the start of an
///                 example (e.g. video). Fractions are allowed, up to a
///                 microsecond precision. "inf" is allowed and it means the end
///                 of the example.
///
///   Errors:
///   If any of the provided CSV files can't be parsed or if more than certain
///   percent of CSV rows cannot be processed then the operation fails and
///   prediction does not happen. Regardless of overall success or failure the
///   per-row failures, up to a certain count cap, will be listed in
///   Operation.metadata.partial_failures.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BatchPredictInputConfig {
    /// Required. The source of the input.
    #[prost(oneof = "batch_predict_input_config::Source", tags = "1, 2")]
    pub source: ::core::option::Option<batch_predict_input_config::Source>,
}
/// Nested message and enum types in `BatchPredictInputConfig`.
pub mod batch_predict_input_config {
    /// Required. The source of the input.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Source {
        /// The Google Cloud Storage location for the input content.
        #[prost(message, tag = "1")]
        GcsSource(super::GcsSource),
        /// The BigQuery location for the input content.
        #[prost(message, tag = "2")]
        BigquerySource(super::BigQuerySource),
    }
}
/// Input configuration of a [Document][google.cloud.automl.v1beta1.Document].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DocumentInputConfig {
    /// The Google Cloud Storage location of the document file. Only a single path
    /// should be given.
    /// Max supported size: 512MB.
    /// Supported extensions: .PDF.
    #[prost(message, optional, tag = "1")]
    pub gcs_source: ::core::option::Option<GcsSource>,
}
/// *  For Translation:
///          CSV file `translation.csv`, with each line in format:
///          ML_USE,GCS_FILE_PATH
///          GCS_FILE_PATH leads to a .TSV file which describes examples that have
///          given ML_USE, using the following row format per line:
///          TEXT_SNIPPET (in source language) \t TEXT_SNIPPET (in target
///          language)
///
///    *  For Tables:
///          Output depends on whether the dataset was imported from GCS or
///          BigQuery.
///          GCS case:
///
/// [gcs_destination][google.cloud.automl.v1beta1.OutputConfig.gcs_destination]
///            must be set. Exported are CSV file(s) `tables_1.csv`,
///            `tables_2.csv`,...,`tables_N.csv` with each having as header line
///            the table's column names, and all other lines contain values for
///            the header columns.
///          BigQuery case:
///
/// [bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]
///            pointing to a BigQuery project must be set. In the given project a
///            new dataset will be created with name
///
/// `export_data_<automl-dataset-display-name>_<timestamp-of-export-call>`
///            where <automl-dataset-display-name> will be made
///            BigQuery-dataset-name compatible (e.g. most special characters will
///            become underscores), and timestamp will be in
///            YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In that
///            dataset a new table called `primary_table` will be created, and
///            filled with precisely the same data as this obtained on import.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct OutputConfig {
    /// Required. The destination of the output.
    #[prost(oneof = "output_config::Destination", tags = "1, 2")]
    pub destination: ::core::option::Option<output_config::Destination>,
}
/// Nested message and enum types in `OutputConfig`.
pub mod output_config {
    /// Required. The destination of the output.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Destination {
        /// The Google Cloud Storage location where the output is to be written to.
        /// For Image Object Detection, Text Extraction, Video Classification and
        /// Tables, in the given directory a new directory will be created with name:
        /// export_data-<dataset-display-name>-<timestamp-of-export-call> where
        /// timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. All export
        /// output will be written into that directory.
        #[prost(message, tag = "1")]
        GcsDestination(super::GcsDestination),
        /// The BigQuery location where the output is to be written to.
        #[prost(message, tag = "2")]
        BigqueryDestination(super::BigQueryDestination),
    }
}
/// Output configuration for BatchPredict Action.
///
/// As destination the
///
/// [gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination]
/// must be set unless specified otherwise for a domain. If gcs_destination is
/// set then in the given directory a new directory is created. Its name
/// will be
/// "prediction-<model-display-name>-<timestamp-of-prediction-call>",
/// where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents
/// of it depends on the ML problem the predictions are made for.
///
///   *  For Image Classification:
///          In the created directory files `image_classification_1.jsonl`,
///          `image_classification_2.jsonl`,...,`image_classification_N.jsonl`
///          will be created, where N may be 1, and depends on the
///          total number of the successfully predicted images and annotations.
///          A single image will be listed only once with all its annotations,
///          and its annotations will never be split across files.
///          Each .JSONL file will contain, per line, a JSON representation of a
///          proto that wraps image's "ID" : "<id_value>" followed by a list of
///          zero or more AnnotationPayload protos (called annotations), which
///          have classification detail populated.
///          If prediction for any image failed (partially or completely), then an
///          additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl`
///          files will be created (N depends on total number of failed
///          predictions). These files will have a JSON representation of a proto
///          that wraps the same "ID" : "<id_value>" but here followed by
///          exactly one
///
/// [`google.rpc.Status`](https:
/// //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
///          containing only `code` and `message`fields.
///
///   *  For Image Object Detection:
///          In the created directory files `image_object_detection_1.jsonl`,
///          `image_object_detection_2.jsonl`,...,`image_object_detection_N.jsonl`
///          will be created, where N may be 1, and depends on the
///          total number of the successfully predicted images and annotations.
///          Each .JSONL file will contain, per line, a JSON representation of a
///          proto that wraps image's "ID" : "<id_value>" followed by a list of
///          zero or more AnnotationPayload protos (called annotations), which
///          have image_object_detection detail populated. A single image will
///          be listed only once with all its annotations, and its annotations
///          will never be split across files.
///          If prediction for any image failed (partially or completely), then
///          additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl`
///          files will be created (N depends on total number of failed
///          predictions). These files will have a JSON representation of a proto
///          that wraps the same "ID" : "<id_value>" but here followed by
///          exactly one
///
/// [`google.rpc.Status`](https:
/// //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
///          containing only `code` and `message`fields.
///   *  For Video Classification:
///          In the created directory a video_classification.csv file, and a .JSON
///          file per each video classification requested in the input (i.e. each
///          line in given CSV(s)), will be created.
///
///          The format of video_classification.csv is:
///
/// GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
///          where:
///          GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
///              the prediction input lines (i.e. video_classification.csv has
///              precisely the same number of lines as the prediction input had.)
///          JSON_FILE_NAME = Name of .JSON file in the output directory, which
///              contains prediction responses for the video time segment.
///          STATUS = "OK" if prediction completed successfully, or an error code
///              with message otherwise. If STATUS is not "OK" then the .JSON file
///              for that line may not exist or be empty.
///
///          Each .JSON file, assuming STATUS is "OK", will contain a list of
///          AnnotationPayload protos in JSON format, which are the predictions
///          for the video time segment the file is assigned to in the
///          video_classification.csv. All AnnotationPayload protos will have
///          video_classification field set, and will be sorted by
///          video_classification.type field (note that the returned types are
///          governed by `classifaction_types` parameter in
///          [PredictService.BatchPredictRequest.params][]).
///
///   *  For Video Object Tracking:
///          In the created directory a video_object_tracking.csv file will be
///          created, and multiple files video_object_trackinng_1.json,
///          video_object_trackinng_2.json,..., video_object_trackinng_N.json,
///          where N is the number of requests in the input (i.e. the number of
///          lines in given CSV(s)).
///
///          The format of video_object_tracking.csv is:
///
/// GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
///          where:
///          GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
///              the prediction input lines (i.e. video_object_tracking.csv has
///              precisely the same number of lines as the prediction input had.)
///          JSON_FILE_NAME = Name of .JSON file in the output directory, which
///              contains prediction responses for the video time segment.
///          STATUS = "OK" if prediction completed successfully, or an error
///              code with message otherwise. If STATUS is not "OK" then the .JSON
///              file for that line may not exist or be empty.
///
///          Each .JSON file, assuming STATUS is "OK", will contain a list of
///          AnnotationPayload protos in JSON format, which are the predictions
///          for each frame of the video time segment the file is assigned to in
///          video_object_tracking.csv. All AnnotationPayload protos will have
///          video_object_tracking field set.
///   *  For Text Classification:
///          In the created directory files `text_classification_1.jsonl`,
///          `text_classification_2.jsonl`,...,`text_classification_N.jsonl`
///          will be created, where N may be 1, and depends on the
///          total number of inputs and annotations found.
///
///          Each .JSONL file will contain, per line, a JSON representation of a
///          proto that wraps input text snippet or input text file and a list of
///          zero or more AnnotationPayload protos (called annotations), which
///          have classification detail populated. A single text snippet or file
///          will be listed only once with all its annotations, and its
///          annotations will never be split across files.
///
///          If prediction for any text snippet or file failed (partially or
///          completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
///          `errors_N.jsonl` files will be created (N depends on total number of
///          failed predictions). These files will have a JSON representation of a
///          proto that wraps input text snippet or input text file followed by
///          exactly one
///
/// [`google.rpc.Status`](https:
/// //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
///          containing only `code` and `message`.
///
///   *  For Text Sentiment:
///          In the created directory files `text_sentiment_1.jsonl`,
///          `text_sentiment_2.jsonl`,...,`text_sentiment_N.jsonl`
///          will be created, where N may be 1, and depends on the
///          total number of inputs and annotations found.
///
///          Each .JSONL file will contain, per line, a JSON representation of a
///          proto that wraps input text snippet or input text file and a list of
///          zero or more AnnotationPayload protos (called annotations), which
///          have text_sentiment detail populated. A single text snippet or file
///          will be listed only once with all its annotations, and its
///          annotations will never be split across files.
///
///          If prediction for any text snippet or file failed (partially or
///          completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
///          `errors_N.jsonl` files will be created (N depends on total number of
///          failed predictions). These files will have a JSON representation of a
///          proto that wraps input text snippet or input text file followed by
///          exactly one
///
/// [`google.rpc.Status`](https:
/// //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
///          containing only `code` and `message`.
///
///    *  For Text Extraction:
///          In the created directory files `text_extraction_1.jsonl`,
///          `text_extraction_2.jsonl`,...,`text_extraction_N.jsonl`
///          will be created, where N may be 1, and depends on the
///          total number of inputs and annotations found.
///          The contents of these .JSONL file(s) depend on whether the input
///          used inline text, or documents.
///          If input was inline, then each .JSONL file will contain, per line,
///            a JSON representation of a proto that wraps given in request text
///            snippet's "id" (if specified), followed by input text snippet,
///            and a list of zero or more
///            AnnotationPayload protos (called annotations), which have
///            text_extraction detail populated. A single text snippet will be
///            listed only once with all its annotations, and its annotations will
///            never be split across files.
///          If input used documents, then each .JSONL file will contain, per
///            line, a JSON representation of a proto that wraps given in request
///            document proto, followed by its OCR-ed representation in the form
///            of a text snippet, finally followed by a list of zero or more
///            AnnotationPayload protos (called annotations), which have
///            text_extraction detail populated and refer, via their indices, to
///            the OCR-ed text snippet. A single document (and its text snippet)
///            will be listed only once with all its annotations, and its
///            annotations will never be split across files.
///          If prediction for any text snippet failed (partially or completely),
///          then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
///          `errors_N.jsonl` files will be created (N depends on total number of
///          failed predictions). These files will have a JSON representation of a
///          proto that wraps either the "id" : "<id_value>" (in case of inline)
///          or the document proto (in case of document) but here followed by
///          exactly one
///
/// [`google.rpc.Status`](https:
/// //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
///          containing only `code` and `message`.
///
///   *  For Tables:
///          Output depends on whether
///
/// [gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination]
///          or
///
/// [bigquery_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.bigquery_destination]
///          is set (either is allowed).
///          GCS case:
///            In the created directory files `tables_1.csv`, `tables_2.csv`,...,
///            `tables_N.csv` will be created, where N may be 1, and depends on
///            the total number of the successfully predicted rows.
///            For all CLASSIFICATION
///
/// [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
///              Each .csv file will contain a header, listing all columns'
///
/// [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
///              given on input followed by M target column names in the format of
///
/// "<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
///
/// [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>_<target
///              value>_score" where M is the number of distinct target values,
///              i.e. number of distinct values in the target column of the table
///              used to train the model. Subsequent lines will contain the
///              respective values of successfully predicted rows, with the last,
///              i.e. the target, columns having the corresponding prediction
///              [scores][google.cloud.automl.v1beta1.TablesAnnotation.score].
///            For REGRESSION and FORECASTING
///
/// [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
///              Each .csv file will contain a header, listing all columns'
///              [display_name-s][google.cloud.automl.v1beta1.display_name] given
///              on input followed by the predicted target column with name in the
///              format of
///
/// "predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
///
/// [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"
///              Subsequent lines will contain the respective values of
///              successfully predicted rows, with the last, i.e. the target,
///              column having the predicted target value.
///              If prediction for any rows failed, then an additional
///              `errors_1.csv`, `errors_2.csv`,..., `errors_N.csv` will be
///              created (N depends on total number of failed rows). These files
///              will have analogous format as `tables_*.csv`, but always with a
///              single target column having
///
/// [`google.rpc.Status`](https:
/// //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
///              represented as a JSON string, and containing only `code` and
///              `message`.
///          BigQuery case:
///
/// [bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]
///            pointing to a BigQuery project must be set. In the given project a
///            new dataset will be created with name
///            `prediction_<model-display-name>_<timestamp-of-prediction-call>`
///            where <model-display-name> will be made
///            BigQuery-dataset-name compatible (e.g. most special characters will
///            become underscores), and timestamp will be in
///            YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset
///            two tables will be created, `predictions`, and `errors`.
///            The `predictions` table's column names will be the input columns'
///
/// [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
///            followed by the target column with name in the format of
///
/// "predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
///
/// [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"
///            The input feature columns will contain the respective values of
///            successfully predicted rows, with the target column having an
///            ARRAY of
///
/// [AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload],
///            represented as STRUCT-s, containing
///            [TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation].
///            The `errors` table contains rows for which the prediction has
///            failed, it has analogous input columns while the target column name
///            is in the format of
///
/// "errors_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
///
/// [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>",
///            and as a value has
///
/// [`google.rpc.Status`](https:
/// //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
///            represented as a STRUCT, and containing only `code` and `message`.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BatchPredictOutputConfig {
    /// Required. The destination of the output.
    #[prost(oneof = "batch_predict_output_config::Destination", tags = "1, 2")]
    pub destination: ::core::option::Option<batch_predict_output_config::Destination>,
}
/// Nested message and enum types in `BatchPredictOutputConfig`.
pub mod batch_predict_output_config {
    /// Required. The destination of the output.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Destination {
        /// The Google Cloud Storage location of the directory where the output is to
        /// be written to.
        #[prost(message, tag = "1")]
        GcsDestination(super::GcsDestination),
        /// The BigQuery location where the output is to be written to.
        #[prost(message, tag = "2")]
        BigqueryDestination(super::BigQueryDestination),
    }
}
/// Output configuration for ModelExport Action.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ModelExportOutputConfig {
    /// The format in which the model must be exported. The available, and default,
    /// formats depend on the problem and model type (if given problem and type
    /// combination doesn't have a format listed, it means its models are not
    /// exportable):
    ///
    /// *  For Image Classification mobile-low-latency-1, mobile-versatile-1,
    ///         mobile-high-accuracy-1:
    ///       "tflite" (default), "edgetpu_tflite", "tf_saved_model", "tf_js",
    ///       "docker".
    ///
    /// *  For Image Classification mobile-core-ml-low-latency-1,
    ///         mobile-core-ml-versatile-1, mobile-core-ml-high-accuracy-1:
    ///       "core_ml" (default).
    ///
    /// *  For Image Object Detection mobile-low-latency-1, mobile-versatile-1,
    ///         mobile-high-accuracy-1:
    ///       "tflite", "tf_saved_model", "tf_js".
    ///
    /// *  For Video Classification cloud,
    ///       "tf_saved_model".
    ///
    /// *  For Video Object Tracking cloud,
    ///       "tf_saved_model".
    ///
    /// *  For Video Object Tracking mobile-versatile-1:
    ///       "tflite", "edgetpu_tflite", "tf_saved_model", "docker".
    ///
    /// *  For Video Object Tracking mobile-coral-versatile-1:
    ///       "tflite", "edgetpu_tflite", "docker".
    ///
    /// *  For Video Object Tracking mobile-coral-low-latency-1:
    ///       "tflite", "edgetpu_tflite", "docker".
    ///
    /// *  For Video Object Tracking mobile-jetson-versatile-1:
    ///       "tf_saved_model", "docker".
    ///
    /// *  For Tables:
    ///       "docker".
    ///
    /// Formats description:
    ///
    /// * tflite - Used for Android mobile devices.
    /// * edgetpu_tflite - Used for [Edge TPU](<https://cloud.google.com/edge-tpu/>)
    ///                     devices.
    /// * tf_saved_model - A tensorflow model in SavedModel format.
    /// * tf_js - A [TensorFlow.js](<https://www.tensorflow.org/js>) model that can
    ///            be used in the browser and in Node.js using JavaScript.
    /// * docker - Used for Docker containers. Use the params field to customize
    ///             the container. The container is verified to work correctly on
    ///             ubuntu 16.04 operating system. See more at
    ///             [containers
    ///
    /// quickstart](https:
    /// //cloud.google.com/vision/automl/docs/containers-gcs-quickstart)
    /// * core_ml - Used for iOS mobile devices.
    #[prost(string, tag = "4")]
    pub model_format: ::prost::alloc::string::String,
    /// Additional model-type and format specific parameters describing the
    /// requirements for the to be exported model files, any string must be up to
    /// 25000 characters long.
    ///
    ///   * For `docker` format:
    ///      `cpu_architecture` - (string) "x86_64" (default).
    ///      `gpu_architecture` - (string) "none" (default), "nvidia".
    #[prost(btree_map = "string, string", tag = "2")]
    pub params: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
    /// Required. The destination of the output.
    #[prost(oneof = "model_export_output_config::Destination", tags = "1, 3")]
    pub destination: ::core::option::Option<model_export_output_config::Destination>,
}
/// Nested message and enum types in `ModelExportOutputConfig`.
pub mod model_export_output_config {
    /// Required. The destination of the output.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Destination {
        /// The Google Cloud Storage location where the model is to be written to.
        /// This location may only be set for the following model formats:
        ///    "tflite", "edgetpu_tflite", "tf_saved_model", "tf_js", "core_ml".
        ///
        ///   Under the directory given as the destination a new one with name
        ///   "model-export-<model-display-name>-<timestamp-of-export-call>",
        ///   where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format,
        ///   will be created. Inside the model and any of its supporting files
        ///   will be written.
        #[prost(message, tag = "1")]
        GcsDestination(super::GcsDestination),
        /// The GCR location where model image is to be pushed to. This location
        /// may only be set for the following model formats:
        ///    "docker".
        ///
        /// The model image will be created under the given URI.
        #[prost(message, tag = "3")]
        GcrDestination(super::GcrDestination),
    }
}
/// Output configuration for ExportEvaluatedExamples Action. Note that this call
/// is available only for 30 days since the moment the model was evaluated.
/// The output depends on the domain, as follows (note that only examples from
/// the TEST set are exported):
///
///   *  For Tables:
///
/// [bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]
///        pointing to a BigQuery project must be set. In the given project a
///        new dataset will be created with name
///
/// `export_evaluated_examples_<model-display-name>_<timestamp-of-export-call>`
///        where <model-display-name> will be made BigQuery-dataset-name
///        compatible (e.g. most special characters will become underscores),
///        and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601"
///        format. In the dataset an `evaluated_examples` table will be
///        created. It will have all the same columns as the
///
/// [primary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id]
///        of the
///        [dataset][google.cloud.automl.v1beta1.Model.dataset_id] from which
///        the model was created, as they were at the moment of model's
///        evaluation (this includes the target column with its ground
///        truth), followed by a column called "predicted_<target_column>". That
///        last column will contain the model's prediction result for each
///        respective row, given as ARRAY of
///        [AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload],
///        represented as STRUCT-s, containing
///        [TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExportEvaluatedExamplesOutputConfig {
    /// Required. The destination of the output.
    #[prost(oneof = "export_evaluated_examples_output_config::Destination", tags = "2")]
    pub destination: ::core::option::Option<
        export_evaluated_examples_output_config::Destination,
    >,
}
/// Nested message and enum types in `ExportEvaluatedExamplesOutputConfig`.
pub mod export_evaluated_examples_output_config {
    /// Required. The destination of the output.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Destination {
        /// The BigQuery location where the output is to be written to.
        #[prost(message, tag = "2")]
        BigqueryDestination(super::BigQueryDestination),
    }
}
/// The Google Cloud Storage location for the input content.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GcsSource {
    /// Required. Google Cloud Storage URIs to input files, up to 2000 characters
    /// long. Accepted forms:
    /// * Full object path, e.g. gs://bucket/directory/object.csv
    #[prost(string, repeated, tag = "1")]
    pub input_uris: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
}
/// The BigQuery location for the input content.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BigQuerySource {
    /// Required. BigQuery URI to a table, up to 2000 characters long.
    /// Accepted forms:
    /// *  BigQuery path e.g. bq://projectId.bqDatasetId.bqTableId
    #[prost(string, tag = "1")]
    pub input_uri: ::prost::alloc::string::String,
}
/// The Google Cloud Storage location where the output is to be written to.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GcsDestination {
    /// Required. Google Cloud Storage URI to output directory, up to 2000
    /// characters long.
    /// Accepted forms:
    /// * Prefix path: gs://bucket/directory
    /// The requesting user must have write permission to the bucket.
    /// The directory is created if it doesn't exist.
    #[prost(string, tag = "1")]
    pub output_uri_prefix: ::prost::alloc::string::String,
}
/// The BigQuery location for the output content.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BigQueryDestination {
    /// Required. BigQuery URI to a project, up to 2000 characters long.
    /// Accepted forms:
    /// *  BigQuery path e.g. bq://projectId
    #[prost(string, tag = "1")]
    pub output_uri: ::prost::alloc::string::String,
}
/// The GCR location where the image must be pushed to.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GcrDestination {
    /// Required. Google Contained Registry URI of the new image, up to 2000
    /// characters long. See
    ///
    /// https:
    /// //cloud.google.com/container-registry/do
    /// // cs/pushing-and-pulling#pushing_an_image_to_a_registry
    /// Accepted forms:
    /// * \[HOSTNAME\]/[PROJECT-ID]/\[IMAGE\]
    /// * \[HOSTNAME\]/[PROJECT-ID]/\[IMAGE\]:[TAG]
    ///
    /// The requesting user must have permission to push images the project.
    #[prost(string, tag = "1")]
    pub output_uri: ::prost::alloc::string::String,
}
/// A contiguous part of a text (string), assuming it has an UTF-8 NFC encoding.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TextSegment {
    /// Output only. The content of the TextSegment.
    #[prost(string, tag = "3")]
    pub content: ::prost::alloc::string::String,
    /// Required. Zero-based character index of the first character of the text
    /// segment (counting characters from the beginning of the text).
    #[prost(int64, tag = "1")]
    pub start_offset: i64,
    /// Required. Zero-based character index of the first character past the end of
    /// the text segment (counting character from the beginning of the text).
    /// The character at the end_offset is NOT included in the text segment.
    #[prost(int64, tag = "2")]
    pub end_offset: i64,
}
/// A representation of an image.
/// Only images up to 30MB in size are supported.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Image {
    /// Output only. HTTP URI to the thumbnail image.
    #[prost(string, tag = "4")]
    pub thumbnail_uri: ::prost::alloc::string::String,
    /// Input only. The data representing the image.
    /// For Predict calls [image_bytes][google.cloud.automl.v1beta1.Image.image_bytes] must be set, as other options are not
    /// currently supported by prediction API. You can read the contents of an
    /// uploaded image by using the [content_uri][google.cloud.automl.v1beta1.Image.content_uri] field.
    #[prost(oneof = "image::Data", tags = "1, 6")]
    pub data: ::core::option::Option<image::Data>,
}
/// Nested message and enum types in `Image`.
pub mod image {
    /// Input only. The data representing the image.
    /// For Predict calls [image_bytes][google.cloud.automl.v1beta1.Image.image_bytes] must be set, as other options are not
    /// currently supported by prediction API. You can read the contents of an
    /// uploaded image by using the [content_uri][google.cloud.automl.v1beta1.Image.content_uri] field.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Data {
        /// Image content represented as a stream of bytes.
        /// Note: As with all `bytes` fields, protobuffers use a pure binary
        /// representation, whereas JSON representations use base64.
        #[prost(bytes, tag = "1")]
        ImageBytes(::prost::bytes::Bytes),
        /// An input config specifying the content of the image.
        #[prost(message, tag = "6")]
        InputConfig(super::InputConfig),
    }
}
/// A representation of a text snippet.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TextSnippet {
    /// Required. The content of the text snippet as a string. Up to 250000
    /// characters long.
    #[prost(string, tag = "1")]
    pub content: ::prost::alloc::string::String,
    /// Optional. The format of [content][google.cloud.automl.v1beta1.TextSnippet.content]. Currently the only two allowed
    /// values are "text/html" and "text/plain". If left blank, the format is
    /// automatically determined from the type of the uploaded [content][google.cloud.automl.v1beta1.TextSnippet.content].
    #[prost(string, tag = "2")]
    pub mime_type: ::prost::alloc::string::String,
    /// Output only. HTTP URI where you can download the content.
    #[prost(string, tag = "4")]
    pub content_uri: ::prost::alloc::string::String,
}
/// Message that describes dimension of a document.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct DocumentDimensions {
    /// Unit of the dimension.
    #[prost(enumeration = "document_dimensions::DocumentDimensionUnit", tag = "1")]
    pub unit: i32,
    /// Width value of the document, works together with the unit.
    #[prost(float, tag = "2")]
    pub width: f32,
    /// Height value of the document, works together with the unit.
    #[prost(float, tag = "3")]
    pub height: f32,
}
/// Nested message and enum types in `DocumentDimensions`.
pub mod document_dimensions {
    /// Unit of the document dimension.
    #[derive(
        Clone,
        Copy,
        Debug,
        PartialEq,
        Eq,
        Hash,
        PartialOrd,
        Ord,
        ::prost::Enumeration
    )]
    #[repr(i32)]
    pub enum DocumentDimensionUnit {
        /// Should not be used.
        Unspecified = 0,
        /// Document dimension is measured in inches.
        Inch = 1,
        /// Document dimension is measured in centimeters.
        Centimeter = 2,
        /// Document dimension is measured in points. 72 points = 1 inch.
        Point = 3,
    }
    impl DocumentDimensionUnit {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                DocumentDimensionUnit::Unspecified => {
                    "DOCUMENT_DIMENSION_UNIT_UNSPECIFIED"
                }
                DocumentDimensionUnit::Inch => "INCH",
                DocumentDimensionUnit::Centimeter => "CENTIMETER",
                DocumentDimensionUnit::Point => "POINT",
            }
        }
        /// Creates an enum from field names used in the ProtoBuf definition.
        pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
            match value {
                "DOCUMENT_DIMENSION_UNIT_UNSPECIFIED" => Some(Self::Unspecified),
                "INCH" => Some(Self::Inch),
                "CENTIMETER" => Some(Self::Centimeter),
                "POINT" => Some(Self::Point),
                _ => None,
            }
        }
    }
}
/// A structured text document e.g. a PDF.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Document {
    /// An input config specifying the content of the document.
    #[prost(message, optional, tag = "1")]
    pub input_config: ::core::option::Option<DocumentInputConfig>,
    /// The plain text version of this document.
    #[prost(message, optional, tag = "2")]
    pub document_text: ::core::option::Option<TextSnippet>,
    /// Describes the layout of the document.
    /// Sorted by [page_number][].
    #[prost(message, repeated, tag = "3")]
    pub layout: ::prost::alloc::vec::Vec<document::Layout>,
    /// The dimensions of the page in the document.
    #[prost(message, optional, tag = "4")]
    pub document_dimensions: ::core::option::Option<DocumentDimensions>,
    /// Number of pages in the document.
    #[prost(int32, tag = "5")]
    pub page_count: i32,
}
/// Nested message and enum types in `Document`.
pub mod document {
    /// Describes the layout information of a [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in the document.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct Layout {
        /// Text Segment that represents a segment in
        /// [document_text][google.cloud.automl.v1beta1.Document.document_text].
        #[prost(message, optional, tag = "1")]
        pub text_segment: ::core::option::Option<super::TextSegment>,
        /// Page number of the [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in the original document, starts
        /// from 1.
        #[prost(int32, tag = "2")]
        pub page_number: i32,
        /// The position of the [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in the page.
        /// Contains exactly 4
        ///
        /// [normalized_vertices][google.cloud.automl.v1beta1.BoundingPoly.normalized_vertices]
        /// and they are connected by edges in the order provided, which will
        /// represent a rectangle parallel to the frame. The
        /// [NormalizedVertex-s][google.cloud.automl.v1beta1.NormalizedVertex] are
        /// relative to the page.
        /// Coordinates are based on top-left as point (0,0).
        #[prost(message, optional, tag = "3")]
        pub bounding_poly: ::core::option::Option<super::BoundingPoly>,
        /// The type of the [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in document.
        #[prost(enumeration = "layout::TextSegmentType", tag = "4")]
        pub text_segment_type: i32,
    }
    /// Nested message and enum types in `Layout`.
    pub mod layout {
        /// The type of TextSegment in the context of the original document.
        #[derive(
            Clone,
            Copy,
            Debug,
            PartialEq,
            Eq,
            Hash,
            PartialOrd,
            Ord,
            ::prost::Enumeration
        )]
        #[repr(i32)]
        pub enum TextSegmentType {
            /// Should not be used.
            Unspecified = 0,
            /// The text segment is a token. e.g. word.
            Token = 1,
            /// The text segment is a paragraph.
            Paragraph = 2,
            /// The text segment is a form field.
            FormField = 3,
            /// The text segment is the name part of a form field. It will be treated
            /// as child of another FORM_FIELD TextSegment if its span is subspan of
            /// another TextSegment with type FORM_FIELD.
            FormFieldName = 4,
            /// The text segment is the text content part of a form field. It will be
            /// treated as child of another FORM_FIELD TextSegment if its span is
            /// subspan of another TextSegment with type FORM_FIELD.
            FormFieldContents = 5,
            /// The text segment is a whole table, including headers, and all rows.
            Table = 6,
            /// The text segment is a table's headers. It will be treated as child of
            /// another TABLE TextSegment if its span is subspan of another TextSegment
            /// with type TABLE.
            TableHeader = 7,
            /// The text segment is a row in table. It will be treated as child of
            /// another TABLE TextSegment if its span is subspan of another TextSegment
            /// with type TABLE.
            TableRow = 8,
            /// The text segment is a cell in table. It will be treated as child of
            /// another TABLE_ROW TextSegment if its span is subspan of another
            /// TextSegment with type TABLE_ROW.
            TableCell = 9,
        }
        impl TextSegmentType {
            /// String value of the enum field names used in the ProtoBuf definition.
            ///
            /// The values are not transformed in any way and thus are considered stable
            /// (if the ProtoBuf definition does not change) and safe for programmatic use.
            pub fn as_str_name(&self) -> &'static str {
                match self {
                    TextSegmentType::Unspecified => "TEXT_SEGMENT_TYPE_UNSPECIFIED",
                    TextSegmentType::Token => "TOKEN",
                    TextSegmentType::Paragraph => "PARAGRAPH",
                    TextSegmentType::FormField => "FORM_FIELD",
                    TextSegmentType::FormFieldName => "FORM_FIELD_NAME",
                    TextSegmentType::FormFieldContents => "FORM_FIELD_CONTENTS",
                    TextSegmentType::Table => "TABLE",
                    TextSegmentType::TableHeader => "TABLE_HEADER",
                    TextSegmentType::TableRow => "TABLE_ROW",
                    TextSegmentType::TableCell => "TABLE_CELL",
                }
            }
            /// Creates an enum from field names used in the ProtoBuf definition.
            pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
                match value {
                    "TEXT_SEGMENT_TYPE_UNSPECIFIED" => Some(Self::Unspecified),
                    "TOKEN" => Some(Self::Token),
                    "PARAGRAPH" => Some(Self::Paragraph),
                    "FORM_FIELD" => Some(Self::FormField),
                    "FORM_FIELD_NAME" => Some(Self::FormFieldName),
                    "FORM_FIELD_CONTENTS" => Some(Self::FormFieldContents),
                    "TABLE" => Some(Self::Table),
                    "TABLE_HEADER" => Some(Self::TableHeader),
                    "TABLE_ROW" => Some(Self::TableRow),
                    "TABLE_CELL" => Some(Self::TableCell),
                    _ => None,
                }
            }
        }
    }
}
/// A representation of a row in a relational table.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Row {
    /// The resource IDs of the column specs describing the columns of the row.
    /// If set must contain, but possibly in a different order, all input
    /// feature
    ///
    /// [column_spec_ids][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
    /// of the Model this row is being passed to.
    /// Note: The below `values` field must match order of this field, if this
    /// field is set.
    #[prost(string, repeated, tag = "2")]
    pub column_spec_ids: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
    /// Required. The values of the row cells, given in the same order as the
    /// column_spec_ids, or, if not set, then in the same order as input
    /// feature
    ///
    /// [column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
    /// of the Model this row is being passed to.
    #[prost(message, repeated, tag = "3")]
    pub values: ::prost::alloc::vec::Vec<::prost_types::Value>,
}
/// Example data used for training or prediction.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExamplePayload {
    /// Required. Input only. The example data.
    #[prost(oneof = "example_payload::Payload", tags = "1, 2, 4, 3")]
    pub payload: ::core::option::Option<example_payload::Payload>,
}
/// Nested message and enum types in `ExamplePayload`.
pub mod example_payload {
    /// Required. Input only. The example data.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Payload {
        /// Example image.
        #[prost(message, tag = "1")]
        Image(super::Image),
        /// Example text.
        #[prost(message, tag = "2")]
        TextSnippet(super::TextSnippet),
        /// Example document.
        #[prost(message, tag = "4")]
        Document(super::Document),
        /// Example relational table row.
        #[prost(message, tag = "3")]
        Row(super::Row),
    }
}
/// Dataset metadata that is specific to translation.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TranslationDatasetMetadata {
    /// Required. The BCP-47 language code of the source language.
    #[prost(string, tag = "1")]
    pub source_language_code: ::prost::alloc::string::String,
    /// Required. The BCP-47 language code of the target language.
    #[prost(string, tag = "2")]
    pub target_language_code: ::prost::alloc::string::String,
}
/// Evaluation metrics for the dataset.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TranslationEvaluationMetrics {
    /// Output only. BLEU score.
    #[prost(double, tag = "1")]
    pub bleu_score: f64,
    /// Output only. BLEU score for base model.
    #[prost(double, tag = "2")]
    pub base_bleu_score: f64,
}
/// Model metadata that is specific to translation.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TranslationModelMetadata {
    /// The resource name of the model to use as a baseline to train the custom
    /// model. If unset, we use the default base model provided by Google
    /// Translate. Format:
    /// `projects/{project_id}/locations/{location_id}/models/{model_id}`
    #[prost(string, tag = "1")]
    pub base_model: ::prost::alloc::string::String,
    /// Output only. Inferred from the dataset.
    /// The source languge (The BCP-47 language code) that is used for training.
    #[prost(string, tag = "2")]
    pub source_language_code: ::prost::alloc::string::String,
    /// Output only. The target languge (The BCP-47 language code) that is used for
    /// training.
    #[prost(string, tag = "3")]
    pub target_language_code: ::prost::alloc::string::String,
}
/// Annotation details specific to translation.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TranslationAnnotation {
    /// Output only . The translated content.
    #[prost(message, optional, tag = "1")]
    pub translated_content: ::core::option::Option<TextSnippet>,
}
/// A range between two double numbers.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct DoubleRange {
    /// Start of the range, inclusive.
    #[prost(double, tag = "1")]
    pub start: f64,
    /// End of the range, exclusive.
    #[prost(double, tag = "2")]
    pub end: f64,
}
/// A definition of an annotation spec.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AnnotationSpec {
    /// Output only. Resource name of the annotation spec.
    /// Form:
    ///
    /// 'projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/annotationSpecs/{annotation_spec_id}'
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The name of the annotation spec to show in the interface. The name can be
    /// up to 32 characters long and must match the regexp `\[a-zA-Z0-9_\]+`.
    #[prost(string, tag = "2")]
    pub display_name: ::prost::alloc::string::String,
    /// Output only. The number of examples in the parent dataset
    /// labeled by the annotation spec.
    #[prost(int32, tag = "9")]
    pub example_count: i32,
}
/// Dataset metadata that is specific to image classification.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct ImageClassificationDatasetMetadata {
    /// Required. Type of the classification problem.
    #[prost(enumeration = "ClassificationType", tag = "1")]
    pub classification_type: i32,
}
/// Dataset metadata specific to image object detection.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct ImageObjectDetectionDatasetMetadata {}
/// Model metadata for image classification.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ImageClassificationModelMetadata {
    /// Optional. The ID of the `base` model. If it is specified, the new model
    /// will be created based on the `base` model. Otherwise, the new model will be
    /// created from scratch. The `base` model must be in the same
    /// `project` and `location` as the new model to create, and have the same
    /// `model_type`.
    #[prost(string, tag = "1")]
    pub base_model_id: ::prost::alloc::string::String,
    /// Required. The train budget of creating this model, expressed in hours. The
    /// actual `train_cost` will be equal or less than this value.
    #[prost(int64, tag = "2")]
    pub train_budget: i64,
    /// Output only. The actual train cost of creating this model, expressed in
    /// hours. If this model is created from a `base` model, the train cost used
    /// to create the `base` model are not included.
    #[prost(int64, tag = "3")]
    pub train_cost: i64,
    /// Output only. The reason that this create model operation stopped,
    /// e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
    #[prost(string, tag = "5")]
    pub stop_reason: ::prost::alloc::string::String,
    /// Optional. Type of the model. The available values are:
    /// *   `cloud` - Model to be used via prediction calls to AutoML API.
    ///                This is the default value.
    /// *   `mobile-low-latency-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
    ///                with TensorFlow afterwards. Expected to have low latency, but
    ///                may have lower prediction quality than other models.
    /// *   `mobile-versatile-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
    ///                with TensorFlow afterwards.
    /// *   `mobile-high-accuracy-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
    ///                with TensorFlow afterwards.  Expected to have a higher
    ///                latency, but should also have a higher prediction quality
    ///                than other models.
    /// *   `mobile-core-ml-low-latency-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile device with Core
    ///                ML afterwards. Expected to have low latency, but may have
    ///                lower prediction quality than other models.
    /// *   `mobile-core-ml-versatile-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile device with Core
    ///                ML afterwards.
    /// *   `mobile-core-ml-high-accuracy-1` - A model that, in addition to
    ///                providing prediction via AutoML API, can also be exported
    ///                (see [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile device with
    ///                Core ML afterwards.  Expected to have a higher latency, but
    ///                should also have a higher prediction quality than other
    ///                models.
    #[prost(string, tag = "7")]
    pub model_type: ::prost::alloc::string::String,
    /// Output only. An approximate number of online prediction QPS that can
    /// be supported by this model per each node on which it is deployed.
    #[prost(double, tag = "13")]
    pub node_qps: f64,
    /// Output only. The number of nodes this model is deployed on. A node is an
    /// abstraction of a machine resource, which can handle online prediction QPS
    /// as given in the node_qps field.
    #[prost(int64, tag = "14")]
    pub node_count: i64,
}
/// Model metadata specific to image object detection.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ImageObjectDetectionModelMetadata {
    /// Optional. Type of the model. The available values are:
    /// *   `cloud-high-accuracy-1` - (default) A model to be used via prediction
    ///                calls to AutoML API. Expected to have a higher latency, but
    ///                should also have a higher prediction quality than other
    ///                models.
    /// *   `cloud-low-latency-1` -  A model to be used via prediction
    ///                calls to AutoML API. Expected to have low latency, but may
    ///                have lower prediction quality than other models.
    /// *   `mobile-low-latency-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
    ///                with TensorFlow afterwards. Expected to have low latency, but
    ///                may have lower prediction quality than other models.
    /// *   `mobile-versatile-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
    ///                with TensorFlow afterwards.
    /// *   `mobile-high-accuracy-1` - A model that, in addition to providing
    ///                prediction via AutoML API, can also be exported (see
    ///                [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
    ///                with TensorFlow afterwards.  Expected to have a higher
    ///                latency, but should also have a higher prediction quality
    ///                than other models.
    #[prost(string, tag = "1")]
    pub model_type: ::prost::alloc::string::String,
    /// Output only. The number of nodes this model is deployed on. A node is an
    /// abstraction of a machine resource, which can handle online prediction QPS
    /// as given in the qps_per_node field.
    #[prost(int64, tag = "3")]
    pub node_count: i64,
    /// Output only. An approximate number of online prediction QPS that can
    /// be supported by this model per each node on which it is deployed.
    #[prost(double, tag = "4")]
    pub node_qps: f64,
    /// Output only. The reason that this create model operation stopped,
    /// e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
    #[prost(string, tag = "5")]
    pub stop_reason: ::prost::alloc::string::String,
    /// The train budget of creating this model, expressed in milli node
    /// hours i.e. 1,000 value in this field means 1 node hour. The actual
    /// `train_cost` will be equal or less than this value. If further model
    /// training ceases to provide any improvements, it will stop without using
    /// full budget and the stop_reason will be `MODEL_CONVERGED`.
    /// Note, node_hour  = actual_hour * number_of_nodes_invovled.
    /// For model type `cloud-high-accuracy-1`(default) and `cloud-low-latency-1`,
    /// the train budget must be between 20,000 and 900,000 milli node hours,
    /// inclusive. The default value is 216, 000 which represents one day in
    /// wall time.
    /// For model type `mobile-low-latency-1`, `mobile-versatile-1`,
    /// `mobile-high-accuracy-1`, `mobile-core-ml-low-latency-1`,
    /// `mobile-core-ml-versatile-1`, `mobile-core-ml-high-accuracy-1`, the train
    /// budget must be between 1,000 and 100,000 milli node hours, inclusive.
    /// The default value is 24, 000 which represents one day in wall time.
    #[prost(int64, tag = "6")]
    pub train_budget_milli_node_hours: i64,
    /// Output only. The actual train cost of creating this model, expressed in
    /// milli node hours, i.e. 1,000 value in this field means 1 node hour.
    /// Guaranteed to not exceed the train budget.
    #[prost(int64, tag = "7")]
    pub train_cost_milli_node_hours: i64,
}
/// Model deployment metadata specific to Image Classification.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct ImageClassificationModelDeploymentMetadata {
    /// Input only. The number of nodes to deploy the model on. A node is an
    /// abstraction of a machine resource, which can handle online prediction QPS
    /// as given in the model's
    ///
    /// [node_qps][google.cloud.automl.v1beta1.ImageClassificationModelMetadata.node_qps].
    /// Must be between 1 and 100, inclusive on both ends.
    #[prost(int64, tag = "1")]
    pub node_count: i64,
}
/// Model deployment metadata specific to Image Object Detection.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct ImageObjectDetectionModelDeploymentMetadata {
    /// Input only. The number of nodes to deploy the model on. A node is an
    /// abstraction of a machine resource, which can handle online prediction QPS
    /// as given in the model's
    ///
    /// [qps_per_node][google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata.qps_per_node].
    /// Must be between 1 and 100, inclusive on both ends.
    #[prost(int64, tag = "1")]
    pub node_count: i64,
}
/// The data statistics of a series of values that share the same DataType.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DataStats {
    /// The number of distinct values.
    #[prost(int64, tag = "1")]
    pub distinct_value_count: i64,
    /// The number of values that are null.
    #[prost(int64, tag = "2")]
    pub null_value_count: i64,
    /// The number of values that are valid.
    #[prost(int64, tag = "9")]
    pub valid_value_count: i64,
    /// The data statistics specific to a DataType.
    #[prost(oneof = "data_stats::Stats", tags = "3, 4, 5, 6, 7, 8")]
    pub stats: ::core::option::Option<data_stats::Stats>,
}
/// Nested message and enum types in `DataStats`.
pub mod data_stats {
    /// The data statistics specific to a DataType.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Stats {
        /// The statistics for FLOAT64 DataType.
        #[prost(message, tag = "3")]
        Float64Stats(super::Float64Stats),
        /// The statistics for STRING DataType.
        #[prost(message, tag = "4")]
        StringStats(super::StringStats),
        /// The statistics for TIMESTAMP DataType.
        #[prost(message, tag = "5")]
        TimestampStats(super::TimestampStats),
        /// The statistics for ARRAY DataType.
        #[prost(message, tag = "6")]
        ArrayStats(::prost::alloc::boxed::Box<super::ArrayStats>),
        /// The statistics for STRUCT DataType.
        #[prost(message, tag = "7")]
        StructStats(super::StructStats),
        /// The statistics for CATEGORY DataType.
        #[prost(message, tag = "8")]
        CategoryStats(super::CategoryStats),
    }
}
/// The data statistics of a series of FLOAT64 values.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Float64Stats {
    /// The mean of the series.
    #[prost(double, tag = "1")]
    pub mean: f64,
    /// The standard deviation of the series.
    #[prost(double, tag = "2")]
    pub standard_deviation: f64,
    /// Ordered from 0 to k k-quantile values of the data series of n values.
    /// The value at index i is, approximately, the i*n/k-th smallest value in the
    /// series; for i = 0 and i = k these are, respectively, the min and max
    /// values.
    #[prost(double, repeated, tag = "3")]
    pub quantiles: ::prost::alloc::vec::Vec<f64>,
    /// Histogram buckets of the data series. Sorted by the min value of the
    /// bucket, ascendingly, and the number of the buckets is dynamically
    /// generated. The buckets are non-overlapping and completely cover whole
    /// FLOAT64 range with min of first bucket being `"-Infinity"`, and max of
    /// the last one being `"Infinity"`.
    #[prost(message, repeated, tag = "4")]
    pub histogram_buckets: ::prost::alloc::vec::Vec<float64_stats::HistogramBucket>,
}
/// Nested message and enum types in `Float64Stats`.
pub mod float64_stats {
    /// A bucket of a histogram.
    #[derive(Clone, Copy, PartialEq, ::prost::Message)]
    pub struct HistogramBucket {
        /// The minimum value of the bucket, inclusive.
        #[prost(double, tag = "1")]
        pub min: f64,
        /// The maximum value of the bucket, exclusive unless max = `"Infinity"`, in
        /// which case it's inclusive.
        #[prost(double, tag = "2")]
        pub max: f64,
        /// The number of data values that are in the bucket, i.e. are between
        /// min and max values.
        #[prost(int64, tag = "3")]
        pub count: i64,
    }
}
/// The data statistics of a series of STRING values.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct StringStats {
    /// The statistics of the top 20 unigrams, ordered by
    /// [count][google.cloud.automl.v1beta1.StringStats.UnigramStats.count].
    #[prost(message, repeated, tag = "1")]
    pub top_unigram_stats: ::prost::alloc::vec::Vec<string_stats::UnigramStats>,
}
/// Nested message and enum types in `StringStats`.
pub mod string_stats {
    /// The statistics of a unigram.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct UnigramStats {
        /// The unigram.
        #[prost(string, tag = "1")]
        pub value: ::prost::alloc::string::String,
        /// The number of occurrences of this unigram in the series.
        #[prost(int64, tag = "2")]
        pub count: i64,
    }
}
/// The data statistics of a series of TIMESTAMP values.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TimestampStats {
    /// The string key is the pre-defined granularity. Currently supported:
    /// hour_of_day, day_of_week, month_of_year.
    /// Granularities finer that the granularity of timestamp data are not
    /// populated (e.g. if timestamps are at day granularity, then hour_of_day
    /// is not populated).
    #[prost(btree_map = "string, message", tag = "1")]
    pub granular_stats: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        timestamp_stats::GranularStats,
    >,
}
/// Nested message and enum types in `TimestampStats`.
pub mod timestamp_stats {
    /// Stats split by a defined in context granularity.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct GranularStats {
        /// A map from granularity key to example count for that key.
        /// E.g. for hour_of_day `13` means 1pm, or for month_of_year `5` means May).
        #[prost(btree_map = "int32, int64", tag = "1")]
        pub buckets: ::prost::alloc::collections::BTreeMap<i32, i64>,
    }
}
/// The data statistics of a series of ARRAY values.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ArrayStats {
    /// Stats of all the values of all arrays, as if they were a single long
    /// series of data. The type depends on the element type of the array.
    #[prost(message, optional, boxed, tag = "2")]
    pub member_stats: ::core::option::Option<::prost::alloc::boxed::Box<DataStats>>,
}
/// The data statistics of a series of STRUCT values.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct StructStats {
    /// Map from a field name of the struct to data stats aggregated over series
    /// of all data in that field across all the structs.
    #[prost(btree_map = "string, message", tag = "1")]
    pub field_stats: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        DataStats,
    >,
}
/// The data statistics of a series of CATEGORY values.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct CategoryStats {
    /// The statistics of the top 20 CATEGORY values, ordered by
    ///
    /// [count][google.cloud.automl.v1beta1.CategoryStats.SingleCategoryStats.count].
    #[prost(message, repeated, tag = "1")]
    pub top_category_stats: ::prost::alloc::vec::Vec<
        category_stats::SingleCategoryStats,
    >,
}
/// Nested message and enum types in `CategoryStats`.
pub mod category_stats {
    /// The statistics of a single CATEGORY value.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct SingleCategoryStats {
        /// The CATEGORY value.
        #[prost(string, tag = "1")]
        pub value: ::prost::alloc::string::String,
        /// The number of occurrences of this value in the series.
        #[prost(int64, tag = "2")]
        pub count: i64,
    }
}
/// A correlation statistics between two series of DataType values. The series
/// may have differing DataType-s, but within a single series the DataType must
/// be the same.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct CorrelationStats {
    /// The correlation value using the Cramer's V measure.
    #[prost(double, tag = "1")]
    pub cramers_v: f64,
}
/// Indicated the type of data that can be stored in a structured data entity
/// (e.g. a table).
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DataType {
    /// Required. The [TypeCode][google.cloud.automl.v1beta1.TypeCode] for this type.
    #[prost(enumeration = "TypeCode", tag = "1")]
    pub type_code: i32,
    /// If true, this DataType can also be `NULL`. In .CSV files `NULL` value is
    /// expressed as an empty string.
    #[prost(bool, tag = "4")]
    pub nullable: bool,
    /// Details of DataType-s that need additional specification.
    #[prost(oneof = "data_type::Details", tags = "2, 3, 5")]
    pub details: ::core::option::Option<data_type::Details>,
}
/// Nested message and enum types in `DataType`.
pub mod data_type {
    /// Details of DataType-s that need additional specification.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Details {
        /// If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [ARRAY][google.cloud.automl.v1beta1.TypeCode.ARRAY],
        /// then `list_element_type` is the type of the elements.
        #[prost(message, tag = "2")]
        ListElementType(::prost::alloc::boxed::Box<super::DataType>),
        /// If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [STRUCT][google.cloud.automl.v1beta1.TypeCode.STRUCT], then `struct_type`
        /// provides type information for the struct's fields.
        #[prost(message, tag = "3")]
        StructType(super::StructType),
        /// If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [TIMESTAMP][google.cloud.automl.v1beta1.TypeCode.TIMESTAMP]
        /// then `time_format` provides the format in which that time field is
        /// expressed. The time_format must either be one of:
        /// * `UNIX_SECONDS`
        /// * `UNIX_MILLISECONDS`
        /// * `UNIX_MICROSECONDS`
        /// * `UNIX_NANOSECONDS`
        /// (for respectively number of seconds, milliseconds, microseconds and
        /// nanoseconds since start of the Unix epoch);
        /// or be written in `strftime` syntax. If time_format is not set, then the
        /// default format as described on the type_code is used.
        #[prost(string, tag = "5")]
        TimeFormat(::prost::alloc::string::String),
    }
}
/// `StructType` defines the DataType-s of a [STRUCT][google.cloud.automl.v1beta1.TypeCode.STRUCT] type.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct StructType {
    /// Unordered map of struct field names to their data types.
    /// Fields cannot be added or removed via Update. Their names and
    /// data types are still mutable.
    #[prost(btree_map = "string, message", tag = "1")]
    pub fields: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        DataType,
    >,
}
/// `TypeCode` is used as a part of
/// [DataType][google.cloud.automl.v1beta1.DataType].
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
#[repr(i32)]
pub enum TypeCode {
    /// Not specified. Should not be used.
    Unspecified = 0,
    /// Encoded as `number`, or the strings `"NaN"`, `"Infinity"`, or
    /// `"-Infinity"`.
    Float64 = 3,
    /// Must be between 0AD and 9999AD. Encoded as `string` according to
    /// [time_format][google.cloud.automl.v1beta1.DataType.time_format], or, if
    /// that format is not set, then in RFC 3339 `date-time` format, where
    /// `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z).
    Timestamp = 4,
    /// Encoded as `string`.
    String = 6,
    /// Encoded as `list`, where the list elements are represented according to
    ///
    /// [list_element_type][google.cloud.automl.v1beta1.DataType.list_element_type].
    Array = 8,
    /// Encoded as `struct`, where field values are represented according to
    /// [struct_type][google.cloud.automl.v1beta1.DataType.struct_type].
    Struct = 9,
    /// Values of this type are not further understood by AutoML,
    /// e.g. AutoML is unable to tell the order of values (as it could with
    /// FLOAT64), or is unable to say if one value contains another (as it
    /// could with STRING).
    /// Encoded as `string` (bytes should be base64-encoded, as described in RFC
    /// 4648, section 4).
    Category = 10,
}
impl TypeCode {
    /// String value of the enum field names used in the ProtoBuf definition.
    ///
    /// The values are not transformed in any way and thus are considered stable
    /// (if the ProtoBuf definition does not change) and safe for programmatic use.
    pub fn as_str_name(&self) -> &'static str {
        match self {
            TypeCode::Unspecified => "TYPE_CODE_UNSPECIFIED",
            TypeCode::Float64 => "FLOAT64",
            TypeCode::Timestamp => "TIMESTAMP",
            TypeCode::String => "STRING",
            TypeCode::Array => "ARRAY",
            TypeCode::Struct => "STRUCT",
            TypeCode::Category => "CATEGORY",
        }
    }
    /// Creates an enum from field names used in the ProtoBuf definition.
    pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
        match value {
            "TYPE_CODE_UNSPECIFIED" => Some(Self::Unspecified),
            "FLOAT64" => Some(Self::Float64),
            "TIMESTAMP" => Some(Self::Timestamp),
            "STRING" => Some(Self::String),
            "ARRAY" => Some(Self::Array),
            "STRUCT" => Some(Self::Struct),
            "CATEGORY" => Some(Self::Category),
            _ => None,
        }
    }
}
/// A representation of a column in a relational table. When listing them, column specs are returned in the same order in which they were
/// given on import .
/// Used by:
///    *   Tables
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ColumnSpec {
    /// Output only. The resource name of the column specs.
    /// Form:
    ///
    /// `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/tableSpecs/{table_spec_id}/columnSpecs/{column_spec_id}`
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// The data type of elements stored in the column.
    #[prost(message, optional, tag = "2")]
    pub data_type: ::core::option::Option<DataType>,
    /// Output only. The name of the column to show in the interface. The name can
    /// be up to 100 characters long and can consist only of ASCII Latin letters
    /// A-Z and a-z, ASCII digits 0-9, underscores(_), and forward slashes(/), and
    /// must start with a letter or a digit.
    #[prost(string, tag = "3")]
    pub display_name: ::prost::alloc::string::String,
    /// Output only. Stats of the series of values in the column.
    /// This field may be stale, see the ancestor's
    /// Dataset.tables_dataset_metadata.stats_update_time field
    /// for the timestamp at which these stats were last updated.
    #[prost(message, optional, tag = "4")]
    pub data_stats: ::core::option::Option<DataStats>,
    /// Deprecated.
    #[prost(message, repeated, tag = "5")]
    pub top_correlated_columns: ::prost::alloc::vec::Vec<column_spec::CorrelatedColumn>,
    /// Used to perform consistent read-modify-write updates. If not set, a blind
    /// "overwrite" update happens.
    #[prost(string, tag = "6")]
    pub etag: ::prost::alloc::string::String,
}
/// Nested message and enum types in `ColumnSpec`.
pub mod column_spec {
    /// Identifies the table's column, and its correlation with the column this
    /// ColumnSpec describes.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct CorrelatedColumn {
        /// The column_spec_id of the correlated column, which belongs to the same
        /// table as the in-context column.
        #[prost(string, tag = "1")]
        pub column_spec_id: ::prost::alloc::string::String,
        /// Correlation between this and the in-context column.
        #[prost(message, optional, tag = "2")]
        pub correlation_stats: ::core::option::Option<super::CorrelationStats>,
    }
}
/// Metrics for regression problems.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct RegressionEvaluationMetrics {
    /// Output only. Root Mean Squared Error (RMSE).
    #[prost(float, tag = "1")]
    pub root_mean_squared_error: f32,
    /// Output only. Mean Absolute Error (MAE).
    #[prost(float, tag = "2")]
    pub mean_absolute_error: f32,
    /// Output only. Mean absolute percentage error. Only set if all ground truth
    /// values are are positive.
    #[prost(float, tag = "3")]
    pub mean_absolute_percentage_error: f32,
    /// Output only. R squared.
    #[prost(float, tag = "4")]
    pub r_squared: f32,
    /// Output only. Root mean squared log error.
    #[prost(float, tag = "5")]
    pub root_mean_squared_log_error: f32,
}
/// Metadata for a dataset used for AutoML Tables.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TablesDatasetMetadata {
    /// Output only. The table_spec_id of the primary table of this dataset.
    #[prost(string, tag = "1")]
    pub primary_table_spec_id: ::prost::alloc::string::String,
    /// column_spec_id of the primary table's column that should be used as the
    /// training & prediction target.
    /// This column must be non-nullable and have one of following data types
    /// (otherwise model creation will error):
    ///
    /// * CATEGORY
    ///
    /// * FLOAT64
    ///
    /// If the type is CATEGORY , only up to
    /// 100 unique values may exist in that column across all rows.
    ///
    /// NOTE: Updates of this field will instantly affect any other users
    /// concurrently working with the dataset.
    #[prost(string, tag = "2")]
    pub target_column_spec_id: ::prost::alloc::string::String,
    /// column_spec_id of the primary table's column that should be used as the
    /// weight column, i.e. the higher the value the more important the row will be
    /// during model training.
    /// Required type: FLOAT64.
    /// Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
    ///                  ignored for training.
    /// If not set all rows are assumed to have equal weight of 1.
    /// NOTE: Updates of this field will instantly affect any other users
    /// concurrently working with the dataset.
    #[prost(string, tag = "3")]
    pub weight_column_spec_id: ::prost::alloc::string::String,
    /// column_spec_id of the primary table column which specifies a possible ML
    /// use of the row, i.e. the column will be used to split the rows into TRAIN,
    /// VALIDATE and TEST sets.
    /// Required type: STRING.
    /// This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
    /// among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
    /// case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
    /// that if a given ml use distribution makes it impossible to create a "good"
    /// model, that call will error describing the issue.
    /// If both this column_spec_id and primary table's time_column_spec_id are not
    /// set, then all rows are treated as `UNASSIGNED`.
    /// NOTE: Updates of this field will instantly affect any other users
    /// concurrently working with the dataset.
    #[prost(string, tag = "4")]
    pub ml_use_column_spec_id: ::prost::alloc::string::String,
    /// Output only. Correlations between
    ///
    /// [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
    /// and other columns of the
    ///
    /// [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
    /// Only set if the target column is set. Mapping from other column spec id to
    /// its CorrelationStats with the target column.
    /// This field may be stale, see the stats_update_time field for
    /// for the timestamp at which these stats were last updated.
    #[prost(btree_map = "string, message", tag = "6")]
    pub target_column_correlations: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        CorrelationStats,
    >,
    /// Output only. The most recent timestamp when target_column_correlations
    /// field and all descendant ColumnSpec.data_stats and
    /// ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
    /// changes that happened to the dataset afterwards are not reflected in these
    /// fields values. The regeneration happens in the background on a best effort
    /// basis.
    #[prost(message, optional, tag = "7")]
    pub stats_update_time: ::core::option::Option<::prost_types::Timestamp>,
}
/// Model metadata specific to AutoML Tables.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TablesModelMetadata {
    /// Column spec of the dataset's primary table's column the model is
    /// predicting. Snapshotted when model creation started.
    /// Only 3 fields are used:
    /// name - May be set on CreateModel, if it's not then the ColumnSpec
    ///         corresponding to the current target_column_spec_id of the dataset
    ///         the model is trained from is used.
    ///         If neither is set, CreateModel will error.
    /// display_name - Output only.
    /// data_type - Output only.
    #[prost(message, optional, tag = "2")]
    pub target_column_spec: ::core::option::Option<ColumnSpec>,
    /// Column specs of the dataset's primary table's columns, on which
    /// the model is trained and which are used as the input for predictions.
    /// The
    ///
    /// [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
    /// as well as, according to dataset's state upon model creation,
    ///
    /// [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
    /// and
    ///
    /// [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
    /// must never be included here.
    ///
    /// Only 3 fields are used:
    ///
    /// * name - May be set on CreateModel, if set only the columns specified are
    ///    used, otherwise all primary table's columns (except the ones listed
    ///    above) are used for the training and prediction input.
    ///
    /// * display_name - Output only.
    ///
    /// * data_type - Output only.
    #[prost(message, repeated, tag = "3")]
    pub input_feature_column_specs: ::prost::alloc::vec::Vec<ColumnSpec>,
    /// Objective function the model is optimizing towards. The training process
    /// creates a model that maximizes/minimizes the value of the objective
    /// function over the validation set.
    ///
    /// The supported optimization objectives depend on the prediction type.
    /// If the field is not set, a default objective function is used.
    ///
    /// CLASSIFICATION_BINARY:
    ///    "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
    ///                                  operating characteristic (ROC) curve.
    ///    "MINIMIZE_LOG_LOSS" - Minimize log loss.
    ///    "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
    ///    "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
    ///                                    recall value.
    ///    "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
    ///                                     precision value.
    ///
    /// CLASSIFICATION_MULTI_CLASS :
    ///    "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
    ///
    ///
    /// REGRESSION:
    ///    "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
    ///    "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
    ///    "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
    #[prost(string, tag = "4")]
    pub optimization_objective: ::prost::alloc::string::String,
    /// Output only. Auxiliary information for each of the
    /// input_feature_column_specs with respect to this particular model.
    #[prost(message, repeated, tag = "5")]
    pub tables_model_column_info: ::prost::alloc::vec::Vec<TablesModelColumnInfo>,
    /// Required. The train budget of creating this model, expressed in milli node
    /// hours i.e. 1,000 value in this field means 1 node hour.
    ///
    /// The training cost of the model will not exceed this budget. The final cost
    /// will be attempted to be close to the budget, though may end up being (even)
    /// noticeably smaller - at the backend's discretion. This especially may
    /// happen when further model training ceases to provide any improvements.
    ///
    /// If the budget is set to a value known to be insufficient to train a
    /// model for the given dataset, the training won't be attempted and
    /// will error.
    ///
    /// The train budget must be between 1,000 and 72,000 milli node hours,
    /// inclusive.
    #[prost(int64, tag = "6")]
    pub train_budget_milli_node_hours: i64,
    /// Output only. The actual training cost of the model, expressed in milli
    /// node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
    /// to not exceed the train budget.
    #[prost(int64, tag = "7")]
    pub train_cost_milli_node_hours: i64,
    /// Use the entire training budget. This disables the early stopping feature.
    /// By default, the early stopping feature is enabled, which means that AutoML
    /// Tables might stop training before the entire training budget has been used.
    #[prost(bool, tag = "12")]
    pub disable_early_stopping: bool,
    /// Additional optimization objective configuration. Required for
    /// `MAXIMIZE_PRECISION_AT_RECALL` and `MAXIMIZE_RECALL_AT_PRECISION`,
    /// otherwise unused.
    #[prost(
        oneof = "tables_model_metadata::AdditionalOptimizationObjectiveConfig",
        tags = "17, 18"
    )]
    pub additional_optimization_objective_config: ::core::option::Option<
        tables_model_metadata::AdditionalOptimizationObjectiveConfig,
    >,
}
/// Nested message and enum types in `TablesModelMetadata`.
pub mod tables_model_metadata {
    /// Additional optimization objective configuration. Required for
    /// `MAXIMIZE_PRECISION_AT_RECALL` and `MAXIMIZE_RECALL_AT_PRECISION`,
    /// otherwise unused.
    #[derive(Clone, Copy, PartialEq, ::prost::Oneof)]
    pub enum AdditionalOptimizationObjectiveConfig {
        /// Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
        /// Must be between 0 and 1, inclusive.
        #[prost(float, tag = "17")]
        OptimizationObjectiveRecallValue(f32),
        /// Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
        /// Must be between 0 and 1, inclusive.
        #[prost(float, tag = "18")]
        OptimizationObjectivePrecisionValue(f32),
    }
}
/// Contains annotation details specific to Tables.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TablesAnnotation {
    /// Output only. A confidence estimate between 0.0 and 1.0, inclusive. A higher
    /// value means greater confidence in the returned value.
    /// For
    ///
    /// [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
    /// of FLOAT64 data type the score is not populated.
    #[prost(float, tag = "1")]
    pub score: f32,
    /// Output only. Only populated when
    ///
    /// [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
    /// has FLOAT64 data type. An interval in which the exactly correct target
    /// value has 95% chance to be in.
    #[prost(message, optional, tag = "4")]
    pub prediction_interval: ::core::option::Option<DoubleRange>,
    /// The predicted value of the row's
    ///
    /// [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec].
    /// The value depends on the column's DataType:
    ///
    /// * CATEGORY - the predicted (with the above confidence `score`) CATEGORY
    ///    value.
    ///
    /// * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
    #[prost(message, optional, tag = "2")]
    pub value: ::core::option::Option<::prost_types::Value>,
    /// Output only. Auxiliary information for each of the model's
    ///
    /// [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
    /// with respect to this particular prediction.
    /// If no other fields than
    ///
    /// [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name]
    /// and
    ///
    /// [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name]
    /// would be populated, then this whole field is not.
    #[prost(message, repeated, tag = "3")]
    pub tables_model_column_info: ::prost::alloc::vec::Vec<TablesModelColumnInfo>,
    /// Output only. Stores the prediction score for the baseline example, which
    /// is defined as the example with all values set to their baseline values.
    /// This is used as part of the Sampled Shapley explanation of the model's
    /// prediction. This field is populated only when feature importance is
    /// requested. For regression models, this holds the baseline prediction for
    /// the baseline example. For classification models, this holds the baseline
    /// prediction for the baseline example for the argmax class.
    #[prost(float, tag = "5")]
    pub baseline_score: f32,
}
/// An information specific to given column and Tables Model, in context
/// of the Model and the predictions created by it.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TablesModelColumnInfo {
    /// Output only. The name of the ColumnSpec describing the column. Not
    /// populated when this proto is outputted to BigQuery.
    #[prost(string, tag = "1")]
    pub column_spec_name: ::prost::alloc::string::String,
    /// Output only. The display name of the column (same as the display_name of
    /// its ColumnSpec).
    #[prost(string, tag = "2")]
    pub column_display_name: ::prost::alloc::string::String,
    /// Output only. When given as part of a Model (always populated):
    /// Measurement of how much model predictions correctness on the TEST data
    /// depend on values in this column. A value between 0 and 1, higher means
    /// higher influence. These values are normalized - for all input feature
    /// columns of a given model they add to 1.
    ///
    /// When given back by Predict (populated iff
    /// [feature_importance
    /// param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch
    /// Predict (populated iff
    /// [feature_importance][google.cloud.automl.v1beta1.PredictRequest.params]
    /// param is set):
    /// Measurement of how impactful for the prediction returned for the given row
    /// the value in this column was. Specifically, the feature importance
    /// specifies the marginal contribution that the feature made to the prediction
    /// score compared to the baseline score. These values are computed using the
    /// Sampled Shapley method.
    #[prost(float, tag = "3")]
    pub feature_importance: f32,
}
/// Dataset metadata for classification.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TextClassificationDatasetMetadata {
    /// Required. Type of the classification problem.
    #[prost(enumeration = "ClassificationType", tag = "1")]
    pub classification_type: i32,
}
/// Model metadata that is specific to text classification.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TextClassificationModelMetadata {
    /// Output only. Classification type of the dataset used to train this model.
    #[prost(enumeration = "ClassificationType", tag = "3")]
    pub classification_type: i32,
}
/// Dataset metadata that is specific to text extraction
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TextExtractionDatasetMetadata {}
/// Model metadata that is specific to text extraction.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TextExtractionModelMetadata {
    /// Indicates the scope of model use case.
    ///
    /// * `default`: Use to train a general text extraction model. Default value.
    ///
    /// * `health_care`: Use to train a text extraction model that is tuned for
    ///    healthcare applications.
    #[prost(string, tag = "3")]
    pub model_hint: ::prost::alloc::string::String,
}
/// Dataset metadata for text sentiment.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TextSentimentDatasetMetadata {
    /// Required. A sentiment is expressed as an integer ordinal, where higher value
    /// means a more positive sentiment. The range of sentiments that will be used
    /// is between 0 and sentiment_max (inclusive on both ends), and all the values
    /// in the range must be represented in the dataset before a model can be
    /// created.
    /// sentiment_max value must be between 1 and 10 (inclusive).
    #[prost(int32, tag = "1")]
    pub sentiment_max: i32,
}
/// Model metadata that is specific to text sentiment.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TextSentimentModelMetadata {}
/// API proto representing a trained machine learning model.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Model {
    /// Output only. Resource name of the model.
    /// Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The name of the model to show in the interface. The name can be
    /// up to 32 characters long and can consist only of ASCII Latin letters A-Z
    /// and a-z, underscores
    /// (_), and ASCII digits 0-9. It must start with a letter.
    #[prost(string, tag = "2")]
    pub display_name: ::prost::alloc::string::String,
    /// Required. The resource ID of the dataset used to create the model. The dataset must
    /// come from the same ancestor project and location.
    #[prost(string, tag = "3")]
    pub dataset_id: ::prost::alloc::string::String,
    /// Output only. Timestamp when the model training finished  and can be used for prediction.
    #[prost(message, optional, tag = "7")]
    pub create_time: ::core::option::Option<::prost_types::Timestamp>,
    /// Output only. Timestamp when this model was last updated.
    #[prost(message, optional, tag = "11")]
    pub update_time: ::core::option::Option<::prost_types::Timestamp>,
    /// Output only. Deployment state of the model. A model can only serve
    /// prediction requests after it gets deployed.
    #[prost(enumeration = "model::DeploymentState", tag = "8")]
    pub deployment_state: i32,
    /// Required.
    /// The model metadata that is specific to the problem type.
    /// Must match the metadata type of the dataset used to train the model.
    #[prost(oneof = "model::ModelMetadata", tags = "15, 13, 14, 20, 23, 21, 19, 24, 22")]
    pub model_metadata: ::core::option::Option<model::ModelMetadata>,
}
/// Nested message and enum types in `Model`.
pub mod model {
    /// Deployment state of the model.
    #[derive(
        Clone,
        Copy,
        Debug,
        PartialEq,
        Eq,
        Hash,
        PartialOrd,
        Ord,
        ::prost::Enumeration
    )]
    #[repr(i32)]
    pub enum DeploymentState {
        /// Should not be used, an un-set enum has this value by default.
        Unspecified = 0,
        /// Model is deployed.
        Deployed = 1,
        /// Model is not deployed.
        Undeployed = 2,
    }
    impl DeploymentState {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                DeploymentState::Unspecified => "DEPLOYMENT_STATE_UNSPECIFIED",
                DeploymentState::Deployed => "DEPLOYED",
                DeploymentState::Undeployed => "UNDEPLOYED",
            }
        }
        /// Creates an enum from field names used in the ProtoBuf definition.
        pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
            match value {
                "DEPLOYMENT_STATE_UNSPECIFIED" => Some(Self::Unspecified),
                "DEPLOYED" => Some(Self::Deployed),
                "UNDEPLOYED" => Some(Self::Undeployed),
                _ => None,
            }
        }
    }
    /// Required.
    /// The model metadata that is specific to the problem type.
    /// Must match the metadata type of the dataset used to train the model.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum ModelMetadata {
        /// Metadata for translation models.
        #[prost(message, tag = "15")]
        TranslationModelMetadata(super::TranslationModelMetadata),
        /// Metadata for image classification models.
        #[prost(message, tag = "13")]
        ImageClassificationModelMetadata(super::ImageClassificationModelMetadata),
        /// Metadata for text classification models.
        #[prost(message, tag = "14")]
        TextClassificationModelMetadata(super::TextClassificationModelMetadata),
        /// Metadata for image object detection models.
        #[prost(message, tag = "20")]
        ImageObjectDetectionModelMetadata(super::ImageObjectDetectionModelMetadata),
        /// Metadata for video classification models.
        #[prost(message, tag = "23")]
        VideoClassificationModelMetadata(super::VideoClassificationModelMetadata),
        /// Metadata for video object tracking models.
        #[prost(message, tag = "21")]
        VideoObjectTrackingModelMetadata(super::VideoObjectTrackingModelMetadata),
        /// Metadata for text extraction models.
        #[prost(message, tag = "19")]
        TextExtractionModelMetadata(super::TextExtractionModelMetadata),
        /// Metadata for Tables models.
        #[prost(message, tag = "24")]
        TablesModelMetadata(super::TablesModelMetadata),
        /// Metadata for text sentiment models.
        #[prost(message, tag = "22")]
        TextSentimentModelMetadata(super::TextSentimentModelMetadata),
    }
}
/// Annotation for identifying spans of text.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TextExtractionAnnotation {
    /// Output only. A confidence estimate between 0.0 and 1.0. A higher value
    /// means greater confidence in correctness of the annotation.
    #[prost(float, tag = "1")]
    pub score: f32,
    /// Required. Text extraction annotations can either be a text segment or a
    /// text relation.
    #[prost(oneof = "text_extraction_annotation::Annotation", tags = "3")]
    pub annotation: ::core::option::Option<text_extraction_annotation::Annotation>,
}
/// Nested message and enum types in `TextExtractionAnnotation`.
pub mod text_extraction_annotation {
    /// Required. Text extraction annotations can either be a text segment or a
    /// text relation.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Annotation {
        /// An entity annotation will set this, which is the part of the original
        /// text to which the annotation pertains.
        #[prost(message, tag = "3")]
        TextSegment(super::TextSegment),
    }
}
/// Model evaluation metrics for text extraction problems.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TextExtractionEvaluationMetrics {
    /// Output only. The Area under precision recall curve metric.
    #[prost(float, tag = "1")]
    pub au_prc: f32,
    /// Output only. Metrics that have confidence thresholds.
    /// Precision-recall curve can be derived from it.
    #[prost(message, repeated, tag = "2")]
    pub confidence_metrics_entries: ::prost::alloc::vec::Vec<
        text_extraction_evaluation_metrics::ConfidenceMetricsEntry,
    >,
}
/// Nested message and enum types in `TextExtractionEvaluationMetrics`.
pub mod text_extraction_evaluation_metrics {
    /// Metrics for a single confidence threshold.
    #[derive(Clone, Copy, PartialEq, ::prost::Message)]
    pub struct ConfidenceMetricsEntry {
        /// Output only. The confidence threshold value used to compute the metrics.
        /// Only annotations with score of at least this threshold are considered to
        /// be ones the model would return.
        #[prost(float, tag = "1")]
        pub confidence_threshold: f32,
        /// Output only. Recall under the given confidence threshold.
        #[prost(float, tag = "3")]
        pub recall: f32,
        /// Output only. Precision under the given confidence threshold.
        #[prost(float, tag = "4")]
        pub precision: f32,
        /// Output only. The harmonic mean of recall and precision.
        #[prost(float, tag = "5")]
        pub f1_score: f32,
    }
}
/// Contains annotation details specific to text sentiment.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TextSentimentAnnotation {
    /// Output only. The sentiment with the semantic, as given to the
    /// [AutoMl.ImportData][google.cloud.automl.v1beta1.AutoMl.ImportData] when populating the dataset from which the model used
    /// for the prediction had been trained.
    /// The sentiment values are between 0 and
    /// Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive),
    /// with higher value meaning more positive sentiment. They are completely
    /// relative, i.e. 0 means least positive sentiment and sentiment_max means
    /// the most positive from the sentiments present in the train data. Therefore
    ///   e.g. if train data had only negative sentiment, then sentiment_max, would
    /// be still negative (although least negative).
    /// The sentiment shouldn't be confused with "score" or "magnitude"
    /// from the previous Natural Language Sentiment Analysis API.
    #[prost(int32, tag = "1")]
    pub sentiment: i32,
}
/// Model evaluation metrics for text sentiment problems.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TextSentimentEvaluationMetrics {
    /// Output only. Precision.
    #[prost(float, tag = "1")]
    pub precision: f32,
    /// Output only. Recall.
    #[prost(float, tag = "2")]
    pub recall: f32,
    /// Output only. The harmonic mean of recall and precision.
    #[prost(float, tag = "3")]
    pub f1_score: f32,
    /// Output only. Mean absolute error. Only set for the overall model
    /// evaluation, not for evaluation of a single annotation spec.
    #[prost(float, tag = "4")]
    pub mean_absolute_error: f32,
    /// Output only. Mean squared error. Only set for the overall model
    /// evaluation, not for evaluation of a single annotation spec.
    #[prost(float, tag = "5")]
    pub mean_squared_error: f32,
    /// Output only. Linear weighted kappa. Only set for the overall model
    /// evaluation, not for evaluation of a single annotation spec.
    #[prost(float, tag = "6")]
    pub linear_kappa: f32,
    /// Output only. Quadratic weighted kappa. Only set for the overall model
    /// evaluation, not for evaluation of a single annotation spec.
    #[prost(float, tag = "7")]
    pub quadratic_kappa: f32,
    /// Output only. Confusion matrix of the evaluation.
    /// Only set for the overall model evaluation, not for evaluation of a single
    /// annotation spec.
    #[prost(message, optional, tag = "8")]
    pub confusion_matrix: ::core::option::Option<
        classification_evaluation_metrics::ConfusionMatrix,
    >,
    /// Output only. The annotation spec ids used for this evaluation.
    /// Deprecated .
    #[deprecated]
    #[prost(string, repeated, tag = "9")]
    pub annotation_spec_id: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
}
/// Contains annotation information that is relevant to AutoML.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AnnotationPayload {
    /// Output only . The resource ID of the annotation spec that
    /// this annotation pertains to. The annotation spec comes from either an
    /// ancestor dataset, or the dataset that was used to train the model in use.
    #[prost(string, tag = "1")]
    pub annotation_spec_id: ::prost::alloc::string::String,
    /// Output only. The value of
    /// [display_name][google.cloud.automl.v1beta1.AnnotationSpec.display_name]
    /// when the model was trained. Because this field returns a value at model
    /// training time, for different models trained using the same dataset, the
    /// returned value could be different as model owner could update the
    /// `display_name` between any two model training.
    #[prost(string, tag = "5")]
    pub display_name: ::prost::alloc::string::String,
    /// Output only . Additional information about the annotation
    /// specific to the AutoML domain.
    #[prost(oneof = "annotation_payload::Detail", tags = "2, 3, 4, 9, 8, 6, 7, 10")]
    pub detail: ::core::option::Option<annotation_payload::Detail>,
}
/// Nested message and enum types in `AnnotationPayload`.
pub mod annotation_payload {
    /// Output only . Additional information about the annotation
    /// specific to the AutoML domain.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Detail {
        /// Annotation details for translation.
        #[prost(message, tag = "2")]
        Translation(super::TranslationAnnotation),
        /// Annotation details for content or image classification.
        #[prost(message, tag = "3")]
        Classification(super::ClassificationAnnotation),
        /// Annotation details for image object detection.
        #[prost(message, tag = "4")]
        ImageObjectDetection(super::ImageObjectDetectionAnnotation),
        /// Annotation details for video classification.
        /// Returned for Video Classification predictions.
        #[prost(message, tag = "9")]
        VideoClassification(super::VideoClassificationAnnotation),
        /// Annotation details for video object tracking.
        #[prost(message, tag = "8")]
        VideoObjectTracking(super::VideoObjectTrackingAnnotation),
        /// Annotation details for text extraction.
        #[prost(message, tag = "6")]
        TextExtraction(super::TextExtractionAnnotation),
        /// Annotation details for text sentiment.
        #[prost(message, tag = "7")]
        TextSentiment(super::TextSentimentAnnotation),
        /// Annotation details for Tables.
        #[prost(message, tag = "10")]
        Tables(super::TablesAnnotation),
    }
}
/// Evaluation results of a model.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ModelEvaluation {
    /// Output only. Resource name of the model evaluation.
    /// Format:
    ///
    /// `projects/{project_id}/locations/{location_id}/models/{model_id}/modelEvaluations/{model_evaluation_id}`
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Output only. The ID of the annotation spec that the model evaluation applies to. The
    /// The ID is empty for the overall model evaluation.
    /// For Tables annotation specs in the dataset do not exist and this ID is
    /// always not set, but for CLASSIFICATION
    ///
    /// [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
    /// the
    /// [display_name][google.cloud.automl.v1beta1.ModelEvaluation.display_name]
    /// field is used.
    #[prost(string, tag = "2")]
    pub annotation_spec_id: ::prost::alloc::string::String,
    /// Output only. The value of
    /// [display_name][google.cloud.automl.v1beta1.AnnotationSpec.display_name] at
    /// the moment when the model was trained. Because this field returns a value
    /// at model training time, for different models trained from the same dataset,
    /// the values may differ, since display names could had been changed between
    /// the two model's trainings.
    /// For Tables CLASSIFICATION
    ///
    /// [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
    /// distinct values of the target column at the moment of the model evaluation
    /// are populated here.
    /// The display_name is empty for the overall model evaluation.
    #[prost(string, tag = "15")]
    pub display_name: ::prost::alloc::string::String,
    /// Output only. Timestamp when this model evaluation was created.
    #[prost(message, optional, tag = "5")]
    pub create_time: ::core::option::Option<::prost_types::Timestamp>,
    /// Output only. The number of examples used for model evaluation, i.e. for
    /// which ground truth from time of model creation is compared against the
    /// predicted annotations created by the model.
    /// For overall ModelEvaluation (i.e. with annotation_spec_id not set) this is
    /// the total number of all examples used for evaluation.
    /// Otherwise, this is the count of examples that according to the ground
    /// truth were annotated by the
    ///
    /// [annotation_spec_id][google.cloud.automl.v1beta1.ModelEvaluation.annotation_spec_id].
    #[prost(int32, tag = "6")]
    pub evaluated_example_count: i32,
    /// Output only. Problem type specific evaluation metrics.
    #[prost(oneof = "model_evaluation::Metrics", tags = "8, 24, 9, 12, 14, 11, 13")]
    pub metrics: ::core::option::Option<model_evaluation::Metrics>,
}
/// Nested message and enum types in `ModelEvaluation`.
pub mod model_evaluation {
    /// Output only. Problem type specific evaluation metrics.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Metrics {
        /// Model evaluation metrics for image, text, video and tables
        /// classification.
        /// Tables problem is considered a classification when the target column
        /// is CATEGORY DataType.
        #[prost(message, tag = "8")]
        ClassificationEvaluationMetrics(super::ClassificationEvaluationMetrics),
        /// Model evaluation metrics for Tables regression.
        /// Tables problem is considered a regression when the target column
        /// has FLOAT64 DataType.
        #[prost(message, tag = "24")]
        RegressionEvaluationMetrics(super::RegressionEvaluationMetrics),
        /// Model evaluation metrics for translation.
        #[prost(message, tag = "9")]
        TranslationEvaluationMetrics(super::TranslationEvaluationMetrics),
        /// Model evaluation metrics for image object detection.
        #[prost(message, tag = "12")]
        ImageObjectDetectionEvaluationMetrics(
            super::ImageObjectDetectionEvaluationMetrics,
        ),
        /// Model evaluation metrics for video object tracking.
        #[prost(message, tag = "14")]
        VideoObjectTrackingEvaluationMetrics(
            super::VideoObjectTrackingEvaluationMetrics,
        ),
        /// Evaluation metrics for text sentiment models.
        #[prost(message, tag = "11")]
        TextSentimentEvaluationMetrics(super::TextSentimentEvaluationMetrics),
        /// Evaluation metrics for text extraction models.
        #[prost(message, tag = "13")]
        TextExtractionEvaluationMetrics(super::TextExtractionEvaluationMetrics),
    }
}
/// Metadata used across all long running operations returned by AutoML API.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct OperationMetadata {
    /// Output only. Progress of operation. Range: \[0, 100\].
    /// Not used currently.
    #[prost(int32, tag = "13")]
    pub progress_percent: i32,
    /// Output only. Partial failures encountered.
    /// E.g. single files that couldn't be read.
    /// This field should never exceed 20 entries.
    /// Status details field will contain standard GCP error details.
    #[prost(message, repeated, tag = "2")]
    pub partial_failures: ::prost::alloc::vec::Vec<super::super::super::rpc::Status>,
    /// Output only. Time when the operation was created.
    #[prost(message, optional, tag = "3")]
    pub create_time: ::core::option::Option<::prost_types::Timestamp>,
    /// Output only. Time when the operation was updated for the last time.
    #[prost(message, optional, tag = "4")]
    pub update_time: ::core::option::Option<::prost_types::Timestamp>,
    /// Ouptut only. Details of specific operation. Even if this field is empty,
    /// the presence allows to distinguish different types of operations.
    #[prost(
        oneof = "operation_metadata::Details",
        tags = "8, 24, 25, 10, 15, 16, 21, 22, 26"
    )]
    pub details: ::core::option::Option<operation_metadata::Details>,
}
/// Nested message and enum types in `OperationMetadata`.
pub mod operation_metadata {
    /// Ouptut only. Details of specific operation. Even if this field is empty,
    /// the presence allows to distinguish different types of operations.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Details {
        /// Details of a Delete operation.
        #[prost(message, tag = "8")]
        DeleteDetails(super::DeleteOperationMetadata),
        /// Details of a DeployModel operation.
        #[prost(message, tag = "24")]
        DeployModelDetails(super::DeployModelOperationMetadata),
        /// Details of an UndeployModel operation.
        #[prost(message, tag = "25")]
        UndeployModelDetails(super::UndeployModelOperationMetadata),
        /// Details of CreateModel operation.
        #[prost(message, tag = "10")]
        CreateModelDetails(super::CreateModelOperationMetadata),
        /// Details of ImportData operation.
        #[prost(message, tag = "15")]
        ImportDataDetails(super::ImportDataOperationMetadata),
        /// Details of BatchPredict operation.
        #[prost(message, tag = "16")]
        BatchPredictDetails(super::BatchPredictOperationMetadata),
        /// Details of ExportData operation.
        #[prost(message, tag = "21")]
        ExportDataDetails(super::ExportDataOperationMetadata),
        /// Details of ExportModel operation.
        #[prost(message, tag = "22")]
        ExportModelDetails(super::ExportModelOperationMetadata),
        /// Details of ExportEvaluatedExamples operation.
        #[prost(message, tag = "26")]
        ExportEvaluatedExamplesDetails(super::ExportEvaluatedExamplesOperationMetadata),
    }
}
/// Details of operations that perform deletes of any entities.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct DeleteOperationMetadata {}
/// Details of DeployModel operation.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct DeployModelOperationMetadata {}
/// Details of UndeployModel operation.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct UndeployModelOperationMetadata {}
/// Details of CreateModel operation.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct CreateModelOperationMetadata {}
/// Details of ImportData operation.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct ImportDataOperationMetadata {}
/// Details of ExportData operation.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExportDataOperationMetadata {
    /// Output only. Information further describing this export data's output.
    #[prost(message, optional, tag = "1")]
    pub output_info: ::core::option::Option<
        export_data_operation_metadata::ExportDataOutputInfo,
    >,
}
/// Nested message and enum types in `ExportDataOperationMetadata`.
pub mod export_data_operation_metadata {
    /// Further describes this export data's output.
    /// Supplements
    /// [OutputConfig][google.cloud.automl.v1beta1.OutputConfig].
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct ExportDataOutputInfo {
        /// The output location to which the exported data is written.
        #[prost(oneof = "export_data_output_info::OutputLocation", tags = "1, 2")]
        pub output_location: ::core::option::Option<
            export_data_output_info::OutputLocation,
        >,
    }
    /// Nested message and enum types in `ExportDataOutputInfo`.
    pub mod export_data_output_info {
        /// The output location to which the exported data is written.
        #[derive(Clone, PartialEq, ::prost::Oneof)]
        pub enum OutputLocation {
            /// The full path of the Google Cloud Storage directory created, into which
            /// the exported data is written.
            #[prost(string, tag = "1")]
            GcsOutputDirectory(::prost::alloc::string::String),
            /// The path of the BigQuery dataset created, in bq://projectId.bqDatasetId
            /// format, into which the exported data is written.
            #[prost(string, tag = "2")]
            BigqueryOutputDataset(::prost::alloc::string::String),
        }
    }
}
/// Details of BatchPredict operation.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BatchPredictOperationMetadata {
    /// Output only. The input config that was given upon starting this
    /// batch predict operation.
    #[prost(message, optional, tag = "1")]
    pub input_config: ::core::option::Option<BatchPredictInputConfig>,
    /// Output only. Information further describing this batch predict's output.
    #[prost(message, optional, tag = "2")]
    pub output_info: ::core::option::Option<
        batch_predict_operation_metadata::BatchPredictOutputInfo,
    >,
}
/// Nested message and enum types in `BatchPredictOperationMetadata`.
pub mod batch_predict_operation_metadata {
    /// Further describes this batch predict's output.
    /// Supplements
    ///
    /// [BatchPredictOutputConfig][google.cloud.automl.v1beta1.BatchPredictOutputConfig].
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct BatchPredictOutputInfo {
        /// The output location into which prediction output is written.
        #[prost(oneof = "batch_predict_output_info::OutputLocation", tags = "1, 2")]
        pub output_location: ::core::option::Option<
            batch_predict_output_info::OutputLocation,
        >,
    }
    /// Nested message and enum types in `BatchPredictOutputInfo`.
    pub mod batch_predict_output_info {
        /// The output location into which prediction output is written.
        #[derive(Clone, PartialEq, ::prost::Oneof)]
        pub enum OutputLocation {
            /// The full path of the Google Cloud Storage directory created, into which
            /// the prediction output is written.
            #[prost(string, tag = "1")]
            GcsOutputDirectory(::prost::alloc::string::String),
            /// The path of the BigQuery dataset created, in bq://projectId.bqDatasetId
            /// format, into which the prediction output is written.
            #[prost(string, tag = "2")]
            BigqueryOutputDataset(::prost::alloc::string::String),
        }
    }
}
/// Details of ExportModel operation.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExportModelOperationMetadata {
    /// Output only. Information further describing the output of this model
    /// export.
    #[prost(message, optional, tag = "2")]
    pub output_info: ::core::option::Option<
        export_model_operation_metadata::ExportModelOutputInfo,
    >,
}
/// Nested message and enum types in `ExportModelOperationMetadata`.
pub mod export_model_operation_metadata {
    /// Further describes the output of model export.
    /// Supplements
    ///
    /// [ModelExportOutputConfig][google.cloud.automl.v1beta1.ModelExportOutputConfig].
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct ExportModelOutputInfo {
        /// The full path of the Google Cloud Storage directory created, into which
        /// the model will be exported.
        #[prost(string, tag = "1")]
        pub gcs_output_directory: ::prost::alloc::string::String,
    }
}
/// Details of EvaluatedExamples operation.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExportEvaluatedExamplesOperationMetadata {
    /// Output only. Information further describing the output of this evaluated
    /// examples export.
    #[prost(message, optional, tag = "2")]
    pub output_info: ::core::option::Option<
        export_evaluated_examples_operation_metadata::ExportEvaluatedExamplesOutputInfo,
    >,
}
/// Nested message and enum types in `ExportEvaluatedExamplesOperationMetadata`.
pub mod export_evaluated_examples_operation_metadata {
    /// Further describes the output of the evaluated examples export.
    /// Supplements
    ///
    /// [ExportEvaluatedExamplesOutputConfig][google.cloud.automl.v1beta1.ExportEvaluatedExamplesOutputConfig].
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct ExportEvaluatedExamplesOutputInfo {
        /// The path of the BigQuery dataset created, in bq://projectId.bqDatasetId
        /// format, into which the output of export evaluated examples is written.
        #[prost(string, tag = "2")]
        pub bigquery_output_dataset: ::prost::alloc::string::String,
    }
}
/// Request message for [PredictionService.Predict][google.cloud.automl.v1beta1.PredictionService.Predict].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct PredictRequest {
    /// Required. Name of the model requested to serve the prediction.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. Payload to perform a prediction on. The payload must match the
    /// problem type that the model was trained to solve.
    #[prost(message, optional, tag = "2")]
    pub payload: ::core::option::Option<ExamplePayload>,
    /// Additional domain-specific parameters, any string must be up to 25000
    /// characters long.
    ///
    /// *  For Image Classification:
    ///
    ///     `score_threshold` - (float) A value from 0.0 to 1.0. When the model
    ///      makes predictions for an image, it will only produce results that have
    ///      at least this confidence score. The default is 0.5.
    ///
    ///   *  For Image Object Detection:
    ///     `score_threshold` - (float) When Model detects objects on the image,
    ///         it will only produce bounding boxes which have at least this
    ///         confidence score. Value in 0 to 1 range, default is 0.5.
    ///     `max_bounding_box_count` - (int64) No more than this number of bounding
    ///         boxes will be returned in the response. Default is 100, the
    ///         requested value may be limited by server.
    /// *  For Tables:
    ///     feature_imp<span>ortan</span>ce - (boolean) Whether feature importance
    ///         should be populated in the returned TablesAnnotation.
    ///         The default is false.
    #[prost(btree_map = "string, string", tag = "3")]
    pub params: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
}
/// Response message for [PredictionService.Predict][google.cloud.automl.v1beta1.PredictionService.Predict].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct PredictResponse {
    /// Prediction result.
    /// Translation and Text Sentiment will return precisely one payload.
    #[prost(message, repeated, tag = "1")]
    pub payload: ::prost::alloc::vec::Vec<AnnotationPayload>,
    /// The preprocessed example that AutoML actually makes prediction on.
    /// Empty if AutoML does not preprocess the input example.
    /// * For Text Extraction:
    ///    If the input is a .pdf file, the OCR'ed text will be provided in
    ///    [document_text][google.cloud.automl.v1beta1.Document.document_text].
    #[prost(message, optional, tag = "3")]
    pub preprocessed_input: ::core::option::Option<ExamplePayload>,
    /// Additional domain-specific prediction response metadata.
    ///
    /// * For Image Object Detection:
    ///   `max_bounding_box_count` - (int64) At most that many bounding boxes per
    ///       image could have been returned.
    ///
    /// * For Text Sentiment:
    ///   `sentiment_score` - (float, deprecated) A value between -1 and 1,
    ///       -1 maps to least positive sentiment, while 1 maps to the most positive
    ///       one and the higher the score, the more positive the sentiment in the
    ///       document is. Yet these values are relative to the training data, so
    ///       e.g. if all data was positive then -1 will be also positive (though
    ///       the least).
    ///       The sentiment_score shouldn't be confused with "score" or "magnitude"
    ///       from the previous Natural Language Sentiment Analysis API.
    #[prost(btree_map = "string, string", tag = "2")]
    pub metadata: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
}
/// Request message for [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BatchPredictRequest {
    /// Required. Name of the model requested to serve the batch prediction.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The input configuration for batch prediction.
    #[prost(message, optional, tag = "3")]
    pub input_config: ::core::option::Option<BatchPredictInputConfig>,
    /// Required. The Configuration specifying where output predictions should
    /// be written.
    #[prost(message, optional, tag = "4")]
    pub output_config: ::core::option::Option<BatchPredictOutputConfig>,
    /// Required. Additional domain-specific parameters for the predictions, any string must
    /// be up to 25000 characters long.
    ///
    /// *  For Text Classification:
    ///
    ///     `score_threshold` - (float) A value from 0.0 to 1.0. When the model
    ///          makes predictions for a text snippet, it will only produce results
    ///          that have at least this confidence score. The default is 0.5.
    ///
    /// *  For Image Classification:
    ///
    ///     `score_threshold` - (float) A value from 0.0 to 1.0. When the model
    ///          makes predictions for an image, it will only produce results that
    ///          have at least this confidence score. The default is 0.5.
    ///
    /// *  For Image Object Detection:
    ///
    ///     `score_threshold` - (float) When Model detects objects on the image,
    ///         it will only produce bounding boxes which have at least this
    ///         confidence score. Value in 0 to 1 range, default is 0.5.
    ///     `max_bounding_box_count` - (int64) No more than this number of bounding
    ///         boxes will be produced per image. Default is 100, the
    ///         requested value may be limited by server.
    ///
    /// *  For Video Classification :
    ///
    ///     `score_threshold` - (float) A value from 0.0 to 1.0. When the model
    ///         makes predictions for a video, it will only produce results that
    ///         have at least this confidence score. The default is 0.5.
    ///     `segment_classification` - (boolean) Set to true to request
    ///         segment-level classification. AutoML Video Intelligence returns
    ///         labels and their confidence scores for the entire segment of the
    ///         video that user specified in the request configuration.
    ///         The default is "true".
    ///     `shot_classification` - (boolean) Set to true to request shot-level
    ///         classification. AutoML Video Intelligence determines the boundaries
    ///         for each camera shot in the entire segment of the video that user
    ///         specified in the request configuration. AutoML Video Intelligence
    ///         then returns labels and their confidence scores for each detected
    ///         shot, along with the start and end time of the shot.
    ///         WARNING: Model evaluation is not done for this classification type,
    ///         the quality of it depends on training data, but there are no metrics
    ///         provided to describe that quality. The default is "false".
    ///     `1s_interval_classification` - (boolean) Set to true to request
    ///         classification for a video at one-second intervals. AutoML Video
    ///         Intelligence returns labels and their confidence scores for each
    ///         second of the entire segment of the video that user specified in the
    ///         request configuration.
    ///         WARNING: Model evaluation is not done for this classification
    ///         type, the quality of it depends on training data, but there are no
    ///         metrics provided to describe that quality. The default is
    ///         "false".
    ///
    /// *  For Tables:
    ///
    ///     feature_imp<span>ortan</span>ce - (boolean) Whether feature importance
    ///         should be populated in the returned TablesAnnotations. The
    ///         default is false.
    ///
    /// *  For Video Object Tracking:
    ///
    ///     `score_threshold` - (float) When Model detects objects on video frames,
    ///         it will only produce bounding boxes which have at least this
    ///         confidence score. Value in 0 to 1 range, default is 0.5.
    ///     `max_bounding_box_count` - (int64) No more than this number of bounding
    ///         boxes will be returned per frame. Default is 100, the requested
    ///         value may be limited by server.
    ///     `min_bounding_box_size` - (float) Only bounding boxes with shortest edge
    ///       at least that long as a relative value of video frame size will be
    ///       returned. Value in 0 to 1 range. Default is 0.
    #[prost(btree_map = "string, string", tag = "5")]
    pub params: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
}
/// Result of the Batch Predict. This message is returned in
/// [response][google.longrunning.Operation.response] of the operation returned
/// by the [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BatchPredictResult {
    /// Additional domain-specific prediction response metadata.
    ///
    /// *  For Image Object Detection:
    ///   `max_bounding_box_count` - (int64) At most that many bounding boxes per
    ///       image could have been returned.
    ///
    /// *  For Video Object Tracking:
    ///   `max_bounding_box_count` - (int64) At most that many bounding boxes per
    ///       frame could have been returned.
    #[prost(btree_map = "string, string", tag = "1")]
    pub metadata: ::prost::alloc::collections::BTreeMap<
        ::prost::alloc::string::String,
        ::prost::alloc::string::String,
    >,
}
/// Generated client implementations.
pub mod prediction_service_client {
    #![allow(unused_variables, dead_code, missing_docs, clippy::let_unit_value)]
    use tonic::codegen::*;
    use tonic::codegen::http::Uri;
    /// AutoML Prediction API.
    ///
    /// On any input that is documented to expect a string parameter in
    /// snake_case or kebab-case, either of those cases is accepted.
    #[derive(Debug, Clone)]
    pub struct PredictionServiceClient<T> {
        inner: tonic::client::Grpc<T>,
    }
    impl<T> PredictionServiceClient<T>
    where
        T: tonic::client::GrpcService<tonic::body::BoxBody>,
        T::Error: Into<StdError>,
        T::ResponseBody: Body<Data = Bytes> + std::marker::Send + 'static,
        <T::ResponseBody as Body>::Error: Into<StdError> + std::marker::Send,
    {
        pub fn new(inner: T) -> Self {
            let inner = tonic::client::Grpc::new(inner);
            Self { inner }
        }
        pub fn with_origin(inner: T, origin: Uri) -> Self {
            let inner = tonic::client::Grpc::with_origin(inner, origin);
            Self { inner }
        }
        pub fn with_interceptor<F>(
            inner: T,
            interceptor: F,
        ) -> PredictionServiceClient<InterceptedService<T, F>>
        where
            F: tonic::service::Interceptor,
            T::ResponseBody: Default,
            T: tonic::codegen::Service<
                http::Request<tonic::body::BoxBody>,
                Response = http::Response<
                    <T as tonic::client::GrpcService<tonic::body::BoxBody>>::ResponseBody,
                >,
            >,
            <T as tonic::codegen::Service<
                http::Request<tonic::body::BoxBody>,
            >>::Error: Into<StdError> + std::marker::Send + std::marker::Sync,
        {
            PredictionServiceClient::new(InterceptedService::new(inner, interceptor))
        }
        /// Compress requests with the given encoding.
        ///
        /// This requires the server to support it otherwise it might respond with an
        /// error.
        #[must_use]
        pub fn send_compressed(mut self, encoding: CompressionEncoding) -> Self {
            self.inner = self.inner.send_compressed(encoding);
            self
        }
        /// Enable decompressing responses.
        #[must_use]
        pub fn accept_compressed(mut self, encoding: CompressionEncoding) -> Self {
            self.inner = self.inner.accept_compressed(encoding);
            self
        }
        /// Limits the maximum size of a decoded message.
        ///
        /// Default: `4MB`
        #[must_use]
        pub fn max_decoding_message_size(mut self, limit: usize) -> Self {
            self.inner = self.inner.max_decoding_message_size(limit);
            self
        }
        /// Limits the maximum size of an encoded message.
        ///
        /// Default: `usize::MAX`
        #[must_use]
        pub fn max_encoding_message_size(mut self, limit: usize) -> Self {
            self.inner = self.inner.max_encoding_message_size(limit);
            self
        }
        /// Perform an online prediction. The prediction result will be directly
        /// returned in the response.
        /// Available for following ML problems, and their expected request payloads:
        /// * Image Classification - Image in .JPEG, .GIF or .PNG format, image_bytes
        ///                          up to 30MB.
        /// * Image Object Detection - Image in .JPEG, .GIF or .PNG format, image_bytes
        ///                            up to 30MB.
        /// * Text Classification - TextSnippet, content up to 60,000 characters,
        ///                         UTF-8 encoded.
        /// * Text Extraction - TextSnippet, content up to 30,000 characters,
        ///                     UTF-8 NFC encoded.
        /// * Translation - TextSnippet, content up to 25,000 characters, UTF-8
        ///                 encoded.
        /// * Tables - Row, with column values matching the columns of the model,
        ///            up to 5MB. Not available for FORECASTING
        ///
        /// [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type].
        /// * Text Sentiment - TextSnippet, content up 500 characters, UTF-8
        ///                     encoded.
        pub async fn predict(
            &mut self,
            request: impl tonic::IntoRequest<super::PredictRequest>,
        ) -> std::result::Result<
            tonic::Response<super::PredictResponse>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.PredictionService/Predict",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.PredictionService",
                        "Predict",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Perform a batch prediction. Unlike the online [Predict][google.cloud.automl.v1beta1.PredictionService.Predict], batch
        /// prediction result won't be immediately available in the response. Instead,
        /// a long running operation object is returned. User can poll the operation
        /// result via [GetOperation][google.longrunning.Operations.GetOperation]
        /// method. Once the operation is done, [BatchPredictResult][google.cloud.automl.v1beta1.BatchPredictResult] is returned in
        /// the [response][google.longrunning.Operation.response] field.
        /// Available for following ML problems:
        /// * Image Classification
        /// * Image Object Detection
        /// * Video Classification
        /// * Video Object Tracking * Text Extraction
        /// * Tables
        pub async fn batch_predict(
            &mut self,
            request: impl tonic::IntoRequest<super::BatchPredictRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.PredictionService/BatchPredict",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.PredictionService",
                        "BatchPredict",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
    }
}
/// A workspace for solving a single, particular machine learning (ML) problem.
/// A workspace contains examples that may be annotated.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Dataset {
    /// Output only. The resource name of the dataset.
    /// Form: `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The name of the dataset to show in the interface. The name can be
    /// up to 32 characters long and can consist only of ASCII Latin letters A-Z
    /// and a-z, underscores
    /// (_), and ASCII digits 0-9.
    #[prost(string, tag = "2")]
    pub display_name: ::prost::alloc::string::String,
    /// User-provided description of the dataset. The description can be up to
    /// 25000 characters long.
    #[prost(string, tag = "3")]
    pub description: ::prost::alloc::string::String,
    /// Output only. The number of examples in the dataset.
    #[prost(int32, tag = "21")]
    pub example_count: i32,
    /// Output only. Timestamp when this dataset was created.
    #[prost(message, optional, tag = "14")]
    pub create_time: ::core::option::Option<::prost_types::Timestamp>,
    /// Used to perform consistent read-modify-write updates. If not set, a blind
    /// "overwrite" update happens.
    #[prost(string, tag = "17")]
    pub etag: ::prost::alloc::string::String,
    /// Required.
    /// The dataset metadata that is specific to the problem type.
    #[prost(
        oneof = "dataset::DatasetMetadata",
        tags = "23, 24, 25, 26, 31, 29, 28, 30, 33"
    )]
    pub dataset_metadata: ::core::option::Option<dataset::DatasetMetadata>,
}
/// Nested message and enum types in `Dataset`.
pub mod dataset {
    /// Required.
    /// The dataset metadata that is specific to the problem type.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum DatasetMetadata {
        /// Metadata for a dataset used for translation.
        #[prost(message, tag = "23")]
        TranslationDatasetMetadata(super::TranslationDatasetMetadata),
        /// Metadata for a dataset used for image classification.
        #[prost(message, tag = "24")]
        ImageClassificationDatasetMetadata(super::ImageClassificationDatasetMetadata),
        /// Metadata for a dataset used for text classification.
        #[prost(message, tag = "25")]
        TextClassificationDatasetMetadata(super::TextClassificationDatasetMetadata),
        /// Metadata for a dataset used for image object detection.
        #[prost(message, tag = "26")]
        ImageObjectDetectionDatasetMetadata(super::ImageObjectDetectionDatasetMetadata),
        /// Metadata for a dataset used for video classification.
        #[prost(message, tag = "31")]
        VideoClassificationDatasetMetadata(super::VideoClassificationDatasetMetadata),
        /// Metadata for a dataset used for video object tracking.
        #[prost(message, tag = "29")]
        VideoObjectTrackingDatasetMetadata(super::VideoObjectTrackingDatasetMetadata),
        /// Metadata for a dataset used for text extraction.
        #[prost(message, tag = "28")]
        TextExtractionDatasetMetadata(super::TextExtractionDatasetMetadata),
        /// Metadata for a dataset used for text sentiment.
        #[prost(message, tag = "30")]
        TextSentimentDatasetMetadata(super::TextSentimentDatasetMetadata),
        /// Metadata for a dataset used for Tables.
        #[prost(message, tag = "33")]
        TablesDatasetMetadata(super::TablesDatasetMetadata),
    }
}
/// A specification of a relational table.
/// The table's schema is represented via its child column specs. It is
/// pre-populated as part of ImportData by schema inference algorithm, the
/// version of which is a required parameter of ImportData InputConfig.
/// Note: While working with a table, at times the schema may be
/// inconsistent with the data in the table (e.g. string in a FLOAT64 column).
/// The consistency validation is done upon creation of a model.
/// Used by:
///    *   Tables
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TableSpec {
    /// Output only. The resource name of the table spec.
    /// Form:
    ///
    /// `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/tableSpecs/{table_spec_id}`
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// column_spec_id of the time column. Only used if the parent dataset's
    /// ml_use_column_spec_id is not set. Used to split rows into TRAIN, VALIDATE
    /// and TEST sets such that oldest rows go to TRAIN set, newest to TEST, and
    /// those in between to VALIDATE.
    /// Required type: TIMESTAMP.
    /// If both this column and ml_use_column are not set, then ML use of all rows
    /// will be assigned by AutoML. NOTE: Updates of this field will instantly
    /// affect any other users concurrently working with the dataset.
    #[prost(string, tag = "2")]
    pub time_column_spec_id: ::prost::alloc::string::String,
    /// Output only. The number of rows (i.e. examples) in the table.
    #[prost(int64, tag = "3")]
    pub row_count: i64,
    /// Output only. The number of valid rows (i.e. without values that don't match
    /// DataType-s of their columns).
    #[prost(int64, tag = "4")]
    pub valid_row_count: i64,
    /// Output only. The number of columns of the table. That is, the number of
    /// child ColumnSpec-s.
    #[prost(int64, tag = "7")]
    pub column_count: i64,
    /// Output only. Input configs via which data currently residing in the table
    /// had been imported.
    #[prost(message, repeated, tag = "5")]
    pub input_configs: ::prost::alloc::vec::Vec<InputConfig>,
    /// Used to perform consistent read-modify-write updates. If not set, a blind
    /// "overwrite" update happens.
    #[prost(string, tag = "6")]
    pub etag: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.CreateDataset][google.cloud.automl.v1beta1.AutoMl.CreateDataset].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct CreateDatasetRequest {
    /// Required. The resource name of the project to create the dataset for.
    #[prost(string, tag = "1")]
    pub parent: ::prost::alloc::string::String,
    /// Required. The dataset to create.
    #[prost(message, optional, tag = "2")]
    pub dataset: ::core::option::Option<Dataset>,
}
/// Request message for [AutoMl.GetDataset][google.cloud.automl.v1beta1.AutoMl.GetDataset].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GetDatasetRequest {
    /// Required. The resource name of the dataset to retrieve.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.ListDatasets][google.cloud.automl.v1beta1.AutoMl.ListDatasets].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListDatasetsRequest {
    /// Required. The resource name of the project from which to list datasets.
    #[prost(string, tag = "1")]
    pub parent: ::prost::alloc::string::String,
    /// An expression for filtering the results of the request.
    ///
    ///    * `dataset_metadata` - for existence of the case (e.g.
    ///              `image_classification_dataset_metadata:*`). Some examples of
    ///              using the filter are:
    ///
    ///    * `translation_dataset_metadata:*` --> The dataset has
    ///                                           `translation_dataset_metadata`.
    #[prost(string, tag = "3")]
    pub filter: ::prost::alloc::string::String,
    /// Requested page size. Server may return fewer results than requested.
    /// If unspecified, server will pick a default size.
    #[prost(int32, tag = "4")]
    pub page_size: i32,
    /// A token identifying a page of results for the server to return
    /// Typically obtained via
    /// [ListDatasetsResponse.next_page_token][google.cloud.automl.v1beta1.ListDatasetsResponse.next_page_token] of the previous
    /// [AutoMl.ListDatasets][google.cloud.automl.v1beta1.AutoMl.ListDatasets] call.
    #[prost(string, tag = "6")]
    pub page_token: ::prost::alloc::string::String,
}
/// Response message for [AutoMl.ListDatasets][google.cloud.automl.v1beta1.AutoMl.ListDatasets].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListDatasetsResponse {
    /// The datasets read.
    #[prost(message, repeated, tag = "1")]
    pub datasets: ::prost::alloc::vec::Vec<Dataset>,
    /// A token to retrieve next page of results.
    /// Pass to [ListDatasetsRequest.page_token][google.cloud.automl.v1beta1.ListDatasetsRequest.page_token] to obtain that page.
    #[prost(string, tag = "2")]
    pub next_page_token: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.UpdateDataset][google.cloud.automl.v1beta1.AutoMl.UpdateDataset]
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct UpdateDatasetRequest {
    /// Required. The dataset which replaces the resource on the server.
    #[prost(message, optional, tag = "1")]
    pub dataset: ::core::option::Option<Dataset>,
    /// The update mask applies to the resource.
    #[prost(message, optional, tag = "2")]
    pub update_mask: ::core::option::Option<::prost_types::FieldMask>,
}
/// Request message for [AutoMl.DeleteDataset][google.cloud.automl.v1beta1.AutoMl.DeleteDataset].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DeleteDatasetRequest {
    /// Required. The resource name of the dataset to delete.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.ImportData][google.cloud.automl.v1beta1.AutoMl.ImportData].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ImportDataRequest {
    /// Required. Dataset name. Dataset must already exist. All imported
    /// annotations and examples will be added.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The desired input location and its domain specific semantics,
    /// if any.
    #[prost(message, optional, tag = "3")]
    pub input_config: ::core::option::Option<InputConfig>,
}
/// Request message for [AutoMl.ExportData][google.cloud.automl.v1beta1.AutoMl.ExportData].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExportDataRequest {
    /// Required. The resource name of the dataset.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The desired output location.
    #[prost(message, optional, tag = "3")]
    pub output_config: ::core::option::Option<OutputConfig>,
}
/// Request message for [AutoMl.GetAnnotationSpec][google.cloud.automl.v1beta1.AutoMl.GetAnnotationSpec].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GetAnnotationSpecRequest {
    /// Required. The resource name of the annotation spec to retrieve.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.GetTableSpec][google.cloud.automl.v1beta1.AutoMl.GetTableSpec].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GetTableSpecRequest {
    /// Required. The resource name of the table spec to retrieve.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Mask specifying which fields to read.
    #[prost(message, optional, tag = "2")]
    pub field_mask: ::core::option::Option<::prost_types::FieldMask>,
}
/// Request message for [AutoMl.ListTableSpecs][google.cloud.automl.v1beta1.AutoMl.ListTableSpecs].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListTableSpecsRequest {
    /// Required. The resource name of the dataset to list table specs from.
    #[prost(string, tag = "1")]
    pub parent: ::prost::alloc::string::String,
    /// Mask specifying which fields to read.
    #[prost(message, optional, tag = "2")]
    pub field_mask: ::core::option::Option<::prost_types::FieldMask>,
    /// Filter expression, see go/filtering.
    #[prost(string, tag = "3")]
    pub filter: ::prost::alloc::string::String,
    /// Requested page size. The server can return fewer results than requested.
    /// If unspecified, the server will pick a default size.
    #[prost(int32, tag = "4")]
    pub page_size: i32,
    /// A token identifying a page of results for the server to return.
    /// Typically obtained from the
    /// [ListTableSpecsResponse.next_page_token][google.cloud.automl.v1beta1.ListTableSpecsResponse.next_page_token] field of the previous
    /// [AutoMl.ListTableSpecs][google.cloud.automl.v1beta1.AutoMl.ListTableSpecs] call.
    #[prost(string, tag = "6")]
    pub page_token: ::prost::alloc::string::String,
}
/// Response message for [AutoMl.ListTableSpecs][google.cloud.automl.v1beta1.AutoMl.ListTableSpecs].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListTableSpecsResponse {
    /// The table specs read.
    #[prost(message, repeated, tag = "1")]
    pub table_specs: ::prost::alloc::vec::Vec<TableSpec>,
    /// A token to retrieve next page of results.
    /// Pass to [ListTableSpecsRequest.page_token][google.cloud.automl.v1beta1.ListTableSpecsRequest.page_token] to obtain that page.
    #[prost(string, tag = "2")]
    pub next_page_token: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.UpdateTableSpec][google.cloud.automl.v1beta1.AutoMl.UpdateTableSpec]
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct UpdateTableSpecRequest {
    /// Required. The table spec which replaces the resource on the server.
    #[prost(message, optional, tag = "1")]
    pub table_spec: ::core::option::Option<TableSpec>,
    /// The update mask applies to the resource.
    #[prost(message, optional, tag = "2")]
    pub update_mask: ::core::option::Option<::prost_types::FieldMask>,
}
/// Request message for [AutoMl.GetColumnSpec][google.cloud.automl.v1beta1.AutoMl.GetColumnSpec].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GetColumnSpecRequest {
    /// Required. The resource name of the column spec to retrieve.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Mask specifying which fields to read.
    #[prost(message, optional, tag = "2")]
    pub field_mask: ::core::option::Option<::prost_types::FieldMask>,
}
/// Request message for [AutoMl.ListColumnSpecs][google.cloud.automl.v1beta1.AutoMl.ListColumnSpecs].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListColumnSpecsRequest {
    /// Required. The resource name of the table spec to list column specs from.
    #[prost(string, tag = "1")]
    pub parent: ::prost::alloc::string::String,
    /// Mask specifying which fields to read.
    #[prost(message, optional, tag = "2")]
    pub field_mask: ::core::option::Option<::prost_types::FieldMask>,
    /// Filter expression, see go/filtering.
    #[prost(string, tag = "3")]
    pub filter: ::prost::alloc::string::String,
    /// Requested page size. The server can return fewer results than requested.
    /// If unspecified, the server will pick a default size.
    #[prost(int32, tag = "4")]
    pub page_size: i32,
    /// A token identifying a page of results for the server to return.
    /// Typically obtained from the
    /// [ListColumnSpecsResponse.next_page_token][google.cloud.automl.v1beta1.ListColumnSpecsResponse.next_page_token] field of the previous
    /// [AutoMl.ListColumnSpecs][google.cloud.automl.v1beta1.AutoMl.ListColumnSpecs] call.
    #[prost(string, tag = "6")]
    pub page_token: ::prost::alloc::string::String,
}
/// Response message for [AutoMl.ListColumnSpecs][google.cloud.automl.v1beta1.AutoMl.ListColumnSpecs].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListColumnSpecsResponse {
    /// The column specs read.
    #[prost(message, repeated, tag = "1")]
    pub column_specs: ::prost::alloc::vec::Vec<ColumnSpec>,
    /// A token to retrieve next page of results.
    /// Pass to [ListColumnSpecsRequest.page_token][google.cloud.automl.v1beta1.ListColumnSpecsRequest.page_token] to obtain that page.
    #[prost(string, tag = "2")]
    pub next_page_token: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.UpdateColumnSpec][google.cloud.automl.v1beta1.AutoMl.UpdateColumnSpec]
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct UpdateColumnSpecRequest {
    /// Required. The column spec which replaces the resource on the server.
    #[prost(message, optional, tag = "1")]
    pub column_spec: ::core::option::Option<ColumnSpec>,
    /// The update mask applies to the resource.
    #[prost(message, optional, tag = "2")]
    pub update_mask: ::core::option::Option<::prost_types::FieldMask>,
}
/// Request message for [AutoMl.CreateModel][google.cloud.automl.v1beta1.AutoMl.CreateModel].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct CreateModelRequest {
    /// Required. Resource name of the parent project where the model is being created.
    #[prost(string, tag = "1")]
    pub parent: ::prost::alloc::string::String,
    /// Required. The model to create.
    #[prost(message, optional, tag = "4")]
    pub model: ::core::option::Option<Model>,
}
/// Request message for [AutoMl.GetModel][google.cloud.automl.v1beta1.AutoMl.GetModel].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GetModelRequest {
    /// Required. Resource name of the model.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.ListModels][google.cloud.automl.v1beta1.AutoMl.ListModels].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListModelsRequest {
    /// Required. Resource name of the project, from which to list the models.
    #[prost(string, tag = "1")]
    pub parent: ::prost::alloc::string::String,
    /// An expression for filtering the results of the request.
    ///
    ///    * `model_metadata` - for existence of the case (e.g.
    ///              `video_classification_model_metadata:*`).
    ///    * `dataset_id` - for = or !=. Some examples of using the filter are:
    ///
    ///    * `image_classification_model_metadata:*` --> The model has
    ///                                       `image_classification_model_metadata`.
    ///    * `dataset_id=5` --> The model was created from a dataset with ID 5.
    #[prost(string, tag = "3")]
    pub filter: ::prost::alloc::string::String,
    /// Requested page size.
    #[prost(int32, tag = "4")]
    pub page_size: i32,
    /// A token identifying a page of results for the server to return
    /// Typically obtained via
    /// [ListModelsResponse.next_page_token][google.cloud.automl.v1beta1.ListModelsResponse.next_page_token] of the previous
    /// [AutoMl.ListModels][google.cloud.automl.v1beta1.AutoMl.ListModels] call.
    #[prost(string, tag = "6")]
    pub page_token: ::prost::alloc::string::String,
}
/// Response message for [AutoMl.ListModels][google.cloud.automl.v1beta1.AutoMl.ListModels].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListModelsResponse {
    /// List of models in the requested page.
    #[prost(message, repeated, tag = "1")]
    pub model: ::prost::alloc::vec::Vec<Model>,
    /// A token to retrieve next page of results.
    /// Pass to [ListModelsRequest.page_token][google.cloud.automl.v1beta1.ListModelsRequest.page_token] to obtain that page.
    #[prost(string, tag = "2")]
    pub next_page_token: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.DeleteModel][google.cloud.automl.v1beta1.AutoMl.DeleteModel].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DeleteModelRequest {
    /// Required. Resource name of the model being deleted.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.DeployModel][google.cloud.automl.v1beta1.AutoMl.DeployModel].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DeployModelRequest {
    /// Required. Resource name of the model to deploy.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// The per-domain specific deployment parameters.
    #[prost(oneof = "deploy_model_request::ModelDeploymentMetadata", tags = "2, 4")]
    pub model_deployment_metadata: ::core::option::Option<
        deploy_model_request::ModelDeploymentMetadata,
    >,
}
/// Nested message and enum types in `DeployModelRequest`.
pub mod deploy_model_request {
    /// The per-domain specific deployment parameters.
    #[derive(Clone, Copy, PartialEq, ::prost::Oneof)]
    pub enum ModelDeploymentMetadata {
        /// Model deployment metadata specific to Image Object Detection.
        #[prost(message, tag = "2")]
        ImageObjectDetectionModelDeploymentMetadata(
            super::ImageObjectDetectionModelDeploymentMetadata,
        ),
        /// Model deployment metadata specific to Image Classification.
        #[prost(message, tag = "4")]
        ImageClassificationModelDeploymentMetadata(
            super::ImageClassificationModelDeploymentMetadata,
        ),
    }
}
/// Request message for [AutoMl.UndeployModel][google.cloud.automl.v1beta1.AutoMl.UndeployModel].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct UndeployModelRequest {
    /// Required. Resource name of the model to undeploy.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel].
/// Models need to be enabled for exporting, otherwise an error code will be
/// returned.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExportModelRequest {
    /// Required. The resource name of the model to export.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The desired output location and configuration.
    #[prost(message, optional, tag = "3")]
    pub output_config: ::core::option::Option<ModelExportOutputConfig>,
}
/// Request message for [AutoMl.ExportEvaluatedExamples][google.cloud.automl.v1beta1.AutoMl.ExportEvaluatedExamples].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ExportEvaluatedExamplesRequest {
    /// Required. The resource name of the model whose evaluated examples are to
    /// be exported.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
    /// Required. The desired output location and configuration.
    #[prost(message, optional, tag = "3")]
    pub output_config: ::core::option::Option<ExportEvaluatedExamplesOutputConfig>,
}
/// Request message for [AutoMl.GetModelEvaluation][google.cloud.automl.v1beta1.AutoMl.GetModelEvaluation].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GetModelEvaluationRequest {
    /// Required. Resource name for the model evaluation.
    #[prost(string, tag = "1")]
    pub name: ::prost::alloc::string::String,
}
/// Request message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListModelEvaluationsRequest {
    /// Required. Resource name of the model to list the model evaluations for.
    /// If modelId is set as "-", this will list model evaluations from across all
    /// models of the parent location.
    #[prost(string, tag = "1")]
    pub parent: ::prost::alloc::string::String,
    /// An expression for filtering the results of the request.
    ///
    ///    * `annotation_spec_id` - for =, !=  or existence. See example below for
    ///                           the last.
    ///
    /// Some examples of using the filter are:
    ///
    ///    * `annotation_spec_id!=4` --> The model evaluation was done for
    ///                              annotation spec with ID different than 4.
    ///    * `NOT annotation_spec_id:*` --> The model evaluation was done for
    ///                                 aggregate of all annotation specs.
    #[prost(string, tag = "3")]
    pub filter: ::prost::alloc::string::String,
    /// Requested page size.
    #[prost(int32, tag = "4")]
    pub page_size: i32,
    /// A token identifying a page of results for the server to return.
    /// Typically obtained via
    /// [ListModelEvaluationsResponse.next_page_token][google.cloud.automl.v1beta1.ListModelEvaluationsResponse.next_page_token] of the previous
    /// [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations] call.
    #[prost(string, tag = "6")]
    pub page_token: ::prost::alloc::string::String,
}
/// Response message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListModelEvaluationsResponse {
    /// List of model evaluations in the requested page.
    #[prost(message, repeated, tag = "1")]
    pub model_evaluation: ::prost::alloc::vec::Vec<ModelEvaluation>,
    /// A token to retrieve next page of results.
    /// Pass to the [ListModelEvaluationsRequest.page_token][google.cloud.automl.v1beta1.ListModelEvaluationsRequest.page_token] field of a new
    /// [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations] request to obtain that page.
    #[prost(string, tag = "2")]
    pub next_page_token: ::prost::alloc::string::String,
}
/// Generated client implementations.
pub mod auto_ml_client {
    #![allow(unused_variables, dead_code, missing_docs, clippy::let_unit_value)]
    use tonic::codegen::*;
    use tonic::codegen::http::Uri;
    /// AutoML Server API.
    ///
    /// The resource names are assigned by the server.
    /// The server never reuses names that it has created after the resources with
    /// those names are deleted.
    ///
    /// An ID of a resource is the last element of the item's resource name. For
    /// `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`, then
    /// the id for the item is `{dataset_id}`.
    ///
    /// Currently the only supported `location_id` is "us-central1".
    ///
    /// On any input that is documented to expect a string parameter in
    /// snake_case or kebab-case, either of those cases is accepted.
    #[derive(Debug, Clone)]
    pub struct AutoMlClient<T> {
        inner: tonic::client::Grpc<T>,
    }
    impl<T> AutoMlClient<T>
    where
        T: tonic::client::GrpcService<tonic::body::BoxBody>,
        T::Error: Into<StdError>,
        T::ResponseBody: Body<Data = Bytes> + std::marker::Send + 'static,
        <T::ResponseBody as Body>::Error: Into<StdError> + std::marker::Send,
    {
        pub fn new(inner: T) -> Self {
            let inner = tonic::client::Grpc::new(inner);
            Self { inner }
        }
        pub fn with_origin(inner: T, origin: Uri) -> Self {
            let inner = tonic::client::Grpc::with_origin(inner, origin);
            Self { inner }
        }
        pub fn with_interceptor<F>(
            inner: T,
            interceptor: F,
        ) -> AutoMlClient<InterceptedService<T, F>>
        where
            F: tonic::service::Interceptor,
            T::ResponseBody: Default,
            T: tonic::codegen::Service<
                http::Request<tonic::body::BoxBody>,
                Response = http::Response<
                    <T as tonic::client::GrpcService<tonic::body::BoxBody>>::ResponseBody,
                >,
            >,
            <T as tonic::codegen::Service<
                http::Request<tonic::body::BoxBody>,
            >>::Error: Into<StdError> + std::marker::Send + std::marker::Sync,
        {
            AutoMlClient::new(InterceptedService::new(inner, interceptor))
        }
        /// Compress requests with the given encoding.
        ///
        /// This requires the server to support it otherwise it might respond with an
        /// error.
        #[must_use]
        pub fn send_compressed(mut self, encoding: CompressionEncoding) -> Self {
            self.inner = self.inner.send_compressed(encoding);
            self
        }
        /// Enable decompressing responses.
        #[must_use]
        pub fn accept_compressed(mut self, encoding: CompressionEncoding) -> Self {
            self.inner = self.inner.accept_compressed(encoding);
            self
        }
        /// Limits the maximum size of a decoded message.
        ///
        /// Default: `4MB`
        #[must_use]
        pub fn max_decoding_message_size(mut self, limit: usize) -> Self {
            self.inner = self.inner.max_decoding_message_size(limit);
            self
        }
        /// Limits the maximum size of an encoded message.
        ///
        /// Default: `usize::MAX`
        #[must_use]
        pub fn max_encoding_message_size(mut self, limit: usize) -> Self {
            self.inner = self.inner.max_encoding_message_size(limit);
            self
        }
        /// Creates a dataset.
        pub async fn create_dataset(
            &mut self,
            request: impl tonic::IntoRequest<super::CreateDatasetRequest>,
        ) -> std::result::Result<tonic::Response<super::Dataset>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/CreateDataset",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.AutoMl",
                        "CreateDataset",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Gets a dataset.
        pub async fn get_dataset(
            &mut self,
            request: impl tonic::IntoRequest<super::GetDatasetRequest>,
        ) -> std::result::Result<tonic::Response<super::Dataset>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/GetDataset",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1beta1.AutoMl", "GetDataset"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Lists datasets in a project.
        pub async fn list_datasets(
            &mut self,
            request: impl tonic::IntoRequest<super::ListDatasetsRequest>,
        ) -> std::result::Result<
            tonic::Response<super::ListDatasetsResponse>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/ListDatasets",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1beta1.AutoMl", "ListDatasets"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Updates a dataset.
        pub async fn update_dataset(
            &mut self,
            request: impl tonic::IntoRequest<super::UpdateDatasetRequest>,
        ) -> std::result::Result<tonic::Response<super::Dataset>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/UpdateDataset",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.AutoMl",
                        "UpdateDataset",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Deletes a dataset and all of its contents.
        /// Returns empty response in the
        /// [response][google.longrunning.Operation.response] field when it completes,
        /// and `delete_details` in the
        /// [metadata][google.longrunning.Operation.metadata] field.
        pub async fn delete_dataset(
            &mut self,
            request: impl tonic::IntoRequest<super::DeleteDatasetRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/DeleteDataset",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.AutoMl",
                        "DeleteDataset",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Imports data into a dataset.
        /// For Tables this method can only be called on an empty Dataset.
        ///
        /// For Tables:
        /// *   A
        /// [schema_inference_version][google.cloud.automl.v1beta1.InputConfig.params]
        ///     parameter must be explicitly set.
        /// Returns an empty response in the
        /// [response][google.longrunning.Operation.response] field when it completes.
        pub async fn import_data(
            &mut self,
            request: impl tonic::IntoRequest<super::ImportDataRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/ImportData",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1beta1.AutoMl", "ImportData"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Exports dataset's data to the provided output location.
        /// Returns an empty response in the
        /// [response][google.longrunning.Operation.response] field when it completes.
        pub async fn export_data(
            &mut self,
            request: impl tonic::IntoRequest<super::ExportDataRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/ExportData",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1beta1.AutoMl", "ExportData"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Gets an annotation spec.
        pub async fn get_annotation_spec(
            &mut self,
            request: impl tonic::IntoRequest<super::GetAnnotationSpecRequest>,
        ) -> std::result::Result<tonic::Response<super::AnnotationSpec>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/GetAnnotationSpec",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.AutoMl",
                        "GetAnnotationSpec",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Gets a table spec.
        pub async fn get_table_spec(
            &mut self,
            request: impl tonic::IntoRequest<super::GetTableSpecRequest>,
        ) -> std::result::Result<tonic::Response<super::TableSpec>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/GetTableSpec",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1beta1.AutoMl", "GetTableSpec"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Lists table specs in a dataset.
        pub async fn list_table_specs(
            &mut self,
            request: impl tonic::IntoRequest<super::ListTableSpecsRequest>,
        ) -> std::result::Result<
            tonic::Response<super::ListTableSpecsResponse>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/ListTableSpecs",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.AutoMl",
                        "ListTableSpecs",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Updates a table spec.
        pub async fn update_table_spec(
            &mut self,
            request: impl tonic::IntoRequest<super::UpdateTableSpecRequest>,
        ) -> std::result::Result<tonic::Response<super::TableSpec>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/UpdateTableSpec",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.AutoMl",
                        "UpdateTableSpec",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Gets a column spec.
        pub async fn get_column_spec(
            &mut self,
            request: impl tonic::IntoRequest<super::GetColumnSpecRequest>,
        ) -> std::result::Result<tonic::Response<super::ColumnSpec>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/GetColumnSpec",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.AutoMl",
                        "GetColumnSpec",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Lists column specs in a table spec.
        pub async fn list_column_specs(
            &mut self,
            request: impl tonic::IntoRequest<super::ListColumnSpecsRequest>,
        ) -> std::result::Result<
            tonic::Response<super::ListColumnSpecsResponse>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/ListColumnSpecs",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.AutoMl",
                        "ListColumnSpecs",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Updates a column spec.
        pub async fn update_column_spec(
            &mut self,
            request: impl tonic::IntoRequest<super::UpdateColumnSpecRequest>,
        ) -> std::result::Result<tonic::Response<super::ColumnSpec>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/UpdateColumnSpec",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.AutoMl",
                        "UpdateColumnSpec",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Creates a model.
        /// Returns a Model in the [response][google.longrunning.Operation.response]
        /// field when it completes.
        /// When you create a model, several model evaluations are created for it:
        /// a global evaluation, and one evaluation for each annotation spec.
        pub async fn create_model(
            &mut self,
            request: impl tonic::IntoRequest<super::CreateModelRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/CreateModel",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1beta1.AutoMl", "CreateModel"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Gets a model.
        pub async fn get_model(
            &mut self,
            request: impl tonic::IntoRequest<super::GetModelRequest>,
        ) -> std::result::Result<tonic::Response<super::Model>, tonic::Status> {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/GetModel",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1beta1.AutoMl", "GetModel"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Lists models.
        pub async fn list_models(
            &mut self,
            request: impl tonic::IntoRequest<super::ListModelsRequest>,
        ) -> std::result::Result<
            tonic::Response<super::ListModelsResponse>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/ListModels",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1beta1.AutoMl", "ListModels"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Deletes a model.
        /// Returns `google.protobuf.Empty` in the
        /// [response][google.longrunning.Operation.response] field when it completes,
        /// and `delete_details` in the
        /// [metadata][google.longrunning.Operation.metadata] field.
        pub async fn delete_model(
            &mut self,
            request: impl tonic::IntoRequest<super::DeleteModelRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/DeleteModel",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1beta1.AutoMl", "DeleteModel"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Deploys a model. If a model is already deployed, deploying it with the
        /// same parameters has no effect. Deploying with different parametrs
        /// (as e.g. changing
        ///
        /// [node_number][google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata.node_number])
        ///  will reset the deployment state without pausing the model's availability.
        ///
        /// Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage
        /// deployment automatically.
        ///
        /// Returns an empty response in the
        /// [response][google.longrunning.Operation.response] field when it completes.
        pub async fn deploy_model(
            &mut self,
            request: impl tonic::IntoRequest<super::DeployModelRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/DeployModel",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1beta1.AutoMl", "DeployModel"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Undeploys a model. If the model is not deployed this method has no effect.
        ///
        /// Only applicable for Text Classification, Image Object Detection and Tables;
        /// all other domains manage deployment automatically.
        ///
        /// Returns an empty response in the
        /// [response][google.longrunning.Operation.response] field when it completes.
        pub async fn undeploy_model(
            &mut self,
            request: impl tonic::IntoRequest<super::UndeployModelRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/UndeployModel",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.AutoMl",
                        "UndeployModel",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Exports a trained, "export-able", model to a user specified Google Cloud
        /// Storage location. A model is considered export-able if and only if it has
        /// an export format defined for it in
        ///
        /// [ModelExportOutputConfig][google.cloud.automl.v1beta1.ModelExportOutputConfig].
        ///
        /// Returns an empty response in the
        /// [response][google.longrunning.Operation.response] field when it completes.
        pub async fn export_model(
            &mut self,
            request: impl tonic::IntoRequest<super::ExportModelRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/ExportModel",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new("google.cloud.automl.v1beta1.AutoMl", "ExportModel"),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Exports examples on which the model was evaluated (i.e. which were in the
        /// TEST set of the dataset the model was created from), together with their
        /// ground truth annotations and the annotations created (predicted) by the
        /// model.
        /// The examples, ground truth and predictions are exported in the state
        /// they were at the moment the model was evaluated.
        ///
        /// This export is available only for 30 days since the model evaluation is
        /// created.
        ///
        /// Currently only available for Tables.
        ///
        /// Returns an empty response in the
        /// [response][google.longrunning.Operation.response] field when it completes.
        pub async fn export_evaluated_examples(
            &mut self,
            request: impl tonic::IntoRequest<super::ExportEvaluatedExamplesRequest>,
        ) -> std::result::Result<
            tonic::Response<super::super::super::super::longrunning::Operation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/ExportEvaluatedExamples",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.AutoMl",
                        "ExportEvaluatedExamples",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Gets a model evaluation.
        pub async fn get_model_evaluation(
            &mut self,
            request: impl tonic::IntoRequest<super::GetModelEvaluationRequest>,
        ) -> std::result::Result<
            tonic::Response<super::ModelEvaluation>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/GetModelEvaluation",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.AutoMl",
                        "GetModelEvaluation",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
        /// Lists model evaluations.
        pub async fn list_model_evaluations(
            &mut self,
            request: impl tonic::IntoRequest<super::ListModelEvaluationsRequest>,
        ) -> std::result::Result<
            tonic::Response<super::ListModelEvaluationsResponse>,
            tonic::Status,
        > {
            self.inner
                .ready()
                .await
                .map_err(|e| {
                    tonic::Status::new(
                        tonic::Code::Unknown,
                        format!("Service was not ready: {}", e.into()),
                    )
                })?;
            let codec = tonic::codec::ProstCodec::default();
            let path = http::uri::PathAndQuery::from_static(
                "/google.cloud.automl.v1beta1.AutoMl/ListModelEvaluations",
            );
            let mut req = request.into_request();
            req.extensions_mut()
                .insert(
                    GrpcMethod::new(
                        "google.cloud.automl.v1beta1.AutoMl",
                        "ListModelEvaluations",
                    ),
                );
            self.inner.unary(req, path, codec).await
        }
    }
}