Struct google_api_proto::google::cloud::aiplatform::v1beta1::batch_prediction_job::InstanceConfig
source · pub struct InstanceConfig {
pub instance_type: String,
pub key_field: String,
pub included_fields: Vec<String>,
pub excluded_fields: Vec<String>,
}
Expand description
Configuration defining how to transform batch prediction input instances to the instances that the Model accepts.
Fields§
§instance_type: String
The format of the instance that the Model accepts. Vertex AI will convert compatible [batch prediction input instance formats][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.instances_format] to the specified format.
Supported values are:
-
object
: Each input is converted to JSON object format.- For
bigquery
, each row is converted to an object. - For
jsonl
, each line of the JSONL input must be an object. - Does not apply to
csv
,file-list
,tf-record
, ortf-record-gzip
.
- For
-
array
: Each input is converted to JSON array format.- For
bigquery
, each row is converted to an array. The order of columns is determined by the BigQuery column order, unless [included_fields][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InstanceConfig.included_fields] is populated. [included_fields][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InstanceConfig.included_fields] must be populated for specifying field orders. - For
jsonl
, if each line of the JSONL input is an object, [included_fields][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InstanceConfig.included_fields] must be populated for specifying field orders. - Does not apply to
csv
,file-list
,tf-record
, ortf-record-gzip
.
- For
If not specified, Vertex AI converts the batch prediction input as follows:
- For
bigquery
andcsv
, the behavior is the same asarray
. The order of columns is the same as defined in the file or table, unless [included_fields][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InstanceConfig.included_fields] is populated. - For
jsonl
, the prediction instance format is determined by each line of the input. - For
tf-record
/tf-record-gzip
, each record will be converted to an object in the format of{"b64": <value>}
, where<value>
is the Base64-encoded string of the content of the record. - For
file-list
, each file in the list will be converted to an object in the format of{"b64": <value>}
, where<value>
is the Base64-encoded string of the content of the file.
key_field: String
The name of the field that is considered as a key.
The values identified by the key field is not included in the transformed
instances that is sent to the Model. This is similar to
specifying this name of the field in
[excluded_fields][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InstanceConfig.excluded_fields].
In addition, the batch prediction output will not include the instances.
Instead the output will only include the value of the key field, in a
field named key
in the output:
- For
jsonl
output format, the output will have akey
field instead of theinstance
field. - For
csv
/bigquery
output format, the output will have have akey
column instead of the instance feature columns.
The input must be JSONL with objects at each line, CSV, BigQuery or TfRecord.
included_fields: Vec<String>
Fields that will be included in the prediction instance that is sent to the Model.
If
[instance_type][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InstanceConfig.instance_type]
is array
, the order of field names in included_fields also determines
the order of the values in the array.
When included_fields is populated, [excluded_fields][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InstanceConfig.excluded_fields] must be empty.
The input must be JSONL with objects at each line, BigQuery or TfRecord.
excluded_fields: Vec<String>
Fields that will be excluded in the prediction instance that is sent to the Model.
Excluded will be attached to the batch prediction output if [key_field][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InstanceConfig.key_field] is not specified.
When excluded_fields is populated, [included_fields][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InstanceConfig.included_fields] must be empty.
The input must be JSONL with objects at each line, BigQuery or TfRecord.
Trait Implementations§
source§impl Clone for InstanceConfig
impl Clone for InstanceConfig
source§fn clone(&self) -> InstanceConfig
fn clone(&self) -> InstanceConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for InstanceConfig
impl Debug for InstanceConfig
source§impl Default for InstanceConfig
impl Default for InstanceConfig
source§impl Message for InstanceConfig
impl Message for InstanceConfig
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
.source§impl PartialEq for InstanceConfig
impl PartialEq for InstanceConfig
source§fn eq(&self, other: &InstanceConfig) -> bool
fn eq(&self, other: &InstanceConfig) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for InstanceConfig
Auto Trait Implementations§
impl Freeze for InstanceConfig
impl RefUnwindSafe for InstanceConfig
impl Send for InstanceConfig
impl Sync for InstanceConfig
impl Unpin for InstanceConfig
impl UnwindSafe for InstanceConfig
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request