Struct google_api_proto::google::cloud::notebooks::v1::ExecutionTemplate
source · pub struct ExecutionTemplate {Show 14 fields
pub scale_tier: i32,
pub master_type: String,
pub accelerator_config: Option<SchedulerAcceleratorConfig>,
pub labels: BTreeMap<String, String>,
pub input_notebook_file: String,
pub container_image_uri: String,
pub output_notebook_folder: String,
pub params_yaml_file: String,
pub parameters: String,
pub service_account: String,
pub job_type: i32,
pub kernel_spec: String,
pub tensorboard: String,
pub job_parameters: Option<JobParameters>,
}
Expand description
The description a notebook execution workload.
Fields§
§scale_tier: i32
Required. Scale tier of the hardware used for notebook execution. DEPRECATED Will be discontinued. As right now only CUSTOM is supported.
master_type: String
Specifies the type of virtual machine to use for your training
job’s master worker. You must specify this field when scaleTier
is set to
CUSTOM
.
You can use certain Compute Engine machine types directly in this field. The following types are supported:
n1-standard-4
n1-standard-8
n1-standard-16
n1-standard-32
n1-standard-64
n1-standard-96
n1-highmem-2
n1-highmem-4
n1-highmem-8
n1-highmem-16
n1-highmem-32
n1-highmem-64
n1-highmem-96
n1-highcpu-16
n1-highcpu-32
n1-highcpu-64
n1-highcpu-96
Alternatively, you can use the following legacy machine types:
standard
large_model
complex_model_s
complex_model_m
complex_model_l
standard_gpu
complex_model_m_gpu
complex_model_l_gpu
standard_p100
complex_model_m_p100
standard_v100
large_model_v100
complex_model_m_v100
complex_model_l_v100
Finally, if you want to use a TPU for training, specify cloud_tpu
in this
field. Learn more about the special configuration options for training
with
TPU.
accelerator_config: Option<SchedulerAcceleratorConfig>
Configuration (count and accelerator type) for hardware running notebook execution.
labels: BTreeMap<String, String>
Labels for execution. If execution is scheduled, a field included will be ‘nbs-scheduled’. Otherwise, it is an immediate execution, and an included field will be ‘nbs-immediate’. Use fields to efficiently index between various types of executions.
input_notebook_file: String
Path to the notebook file to execute.
Must be in a Google Cloud Storage bucket.
Format: gs://{bucket_name}/{folder}/{notebook_file_name}
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
container_image_uri: String
Container Image URI to a DLVM Example: ‘gcr.io/deeplearning-platform-release/base-cu100’ More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
output_notebook_folder: String
Path to the notebook folder to write to.
Must be in a Google Cloud Storage bucket path.
Format: gs://{bucket_name}/{folder}
Ex: gs://notebook_user/scheduled_notebooks
params_yaml_file: String
Parameters to be overridden in the notebook during execution.
Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on
how to specifying parameters in the input notebook and pass them here
in an YAML file.
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
parameters: String
Parameters used within the ‘input_notebook_file’ notebook.
service_account: String
The email address of a service account to use when running the execution.
You must have the iam.serviceAccounts.actAs
permission for the specified
service account.
job_type: i32
The type of Job to be used on this execution.
kernel_spec: String
Name of the kernel spec to use. This must be specified if the kernel spec name on the execution target does not match the name in the input notebook file.
tensorboard: String
The name of a Vertex AI [Tensorboard] resource to which this execution
will upload Tensorboard logs.
Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}
job_parameters: Option<JobParameters>
Parameters for an execution type. NOTE: There are currently no extra parameters for VertexAI jobs.
Implementations§
source§impl ExecutionTemplate
impl ExecutionTemplate
sourcepub fn scale_tier(&self) -> ScaleTier
pub fn scale_tier(&self) -> ScaleTier
Returns the enum value of scale_tier
, or the default if the field is set to an invalid enum value.
sourcepub fn set_scale_tier(&mut self, value: ScaleTier)
pub fn set_scale_tier(&mut self, value: ScaleTier)
Sets scale_tier
to the provided enum value.
sourcepub fn job_type(&self) -> JobType
pub fn job_type(&self) -> JobType
Returns the enum value of job_type
, or the default if the field is set to an invalid enum value.
sourcepub fn set_job_type(&mut self, value: JobType)
pub fn set_job_type(&mut self, value: JobType)
Sets job_type
to the provided enum value.
Trait Implementations§
source§impl Clone for ExecutionTemplate
impl Clone for ExecutionTemplate
source§fn clone(&self) -> ExecutionTemplate
fn clone(&self) -> ExecutionTemplate
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for ExecutionTemplate
impl Debug for ExecutionTemplate
source§impl Default for ExecutionTemplate
impl Default for ExecutionTemplate
source§impl Message for ExecutionTemplate
impl Message for ExecutionTemplate
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
.source§impl PartialEq for ExecutionTemplate
impl PartialEq for ExecutionTemplate
source§fn eq(&self, other: &ExecutionTemplate) -> bool
fn eq(&self, other: &ExecutionTemplate) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for ExecutionTemplate
Auto Trait Implementations§
impl Freeze for ExecutionTemplate
impl RefUnwindSafe for ExecutionTemplate
impl Send for ExecutionTemplate
impl Sync for ExecutionTemplate
impl Unpin for ExecutionTemplate
impl UnwindSafe for ExecutionTemplate
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request