Struct google_api_proto::google::cloud::bigquery::v2::model::AggregateClassificationMetrics
source · pub struct AggregateClassificationMetrics {
pub precision: Option<f64>,
pub recall: Option<f64>,
pub accuracy: Option<f64>,
pub threshold: Option<f64>,
pub f1_score: Option<f64>,
pub log_loss: Option<f64>,
pub roc_auc: Option<f64>,
}
Expand description
Aggregate metrics for classification/classifier models. For multi-class models, the metrics are either macro-averaged or micro-averaged. When macro-averaged, the metrics are calculated for each label and then an unweighted average is taken of those values. When micro-averaged, the metric is calculated globally by counting the total number of correctly predicted rows.
Fields§
§precision: Option<f64>
Precision is the fraction of actual positive predictions that had positive actual labels. For multiclass this is a macro-averaged metric treating each class as a binary classifier.
recall: Option<f64>
Recall is the fraction of actual positive labels that were given a positive prediction. For multiclass this is a macro-averaged metric.
accuracy: Option<f64>
Accuracy is the fraction of predictions given the correct label. For multiclass this is a micro-averaged metric.
threshold: Option<f64>
Threshold at which the metrics are computed. For binary classification models this is the positive class threshold. For multi-class classfication models this is the confidence threshold.
f1_score: Option<f64>
The F1 score is an average of recall and precision. For multiclass this is a macro-averaged metric.
log_loss: Option<f64>
Logarithmic Loss. For multiclass this is a macro-averaged metric.
roc_auc: Option<f64>
Area Under a ROC Curve. For multiclass this is a macro-averaged metric.
Trait Implementations§
source§impl Clone for AggregateClassificationMetrics
impl Clone for AggregateClassificationMetrics
source§fn clone(&self) -> AggregateClassificationMetrics
fn clone(&self) -> AggregateClassificationMetrics
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Message for AggregateClassificationMetrics
impl Message for AggregateClassificationMetrics
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
.source§impl PartialEq for AggregateClassificationMetrics
impl PartialEq for AggregateClassificationMetrics
source§fn eq(&self, other: &AggregateClassificationMetrics) -> bool
fn eq(&self, other: &AggregateClassificationMetrics) -> bool
self
and other
values to be equal, and is used
by ==
.impl Copy for AggregateClassificationMetrics
impl StructuralPartialEq for AggregateClassificationMetrics
Auto Trait Implementations§
impl Freeze for AggregateClassificationMetrics
impl RefUnwindSafe for AggregateClassificationMetrics
impl Send for AggregateClassificationMetrics
impl Sync for AggregateClassificationMetrics
impl Unpin for AggregateClassificationMetrics
impl UnwindSafe for AggregateClassificationMetrics
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request