Struct google_api_proto::google::cloud::aiplatform::v1::Attribution
source · pub struct Attribution {
pub baseline_output_value: f64,
pub instance_output_value: f64,
pub feature_attributions: Option<Value>,
pub output_index: Vec<i32>,
pub output_display_name: String,
pub approximation_error: f64,
pub output_name: String,
}
Expand description
Attribution that explains a particular prediction output.
Fields§
§baseline_output_value: f64
Output only. Model predicted output if the input instance is constructed from the baselines of all the features defined in [ExplanationMetadata.inputs][google.cloud.aiplatform.v1.ExplanationMetadata.inputs]. The field name of the output is determined by the key in [ExplanationMetadata.outputs][google.cloud.aiplatform.v1.ExplanationMetadata.outputs].
If the Model’s predicted output has multiple dimensions (rank > 1), this is the value in the output located by [output_index][google.cloud.aiplatform.v1.Attribution.output_index].
If there are multiple baselines, their output values are averaged.
instance_output_value: f64
Output only. Model predicted output on the corresponding [explanation instance][ExplainRequest.instances]. The field name of the output is determined by the key in [ExplanationMetadata.outputs][google.cloud.aiplatform.v1.ExplanationMetadata.outputs].
If the Model predicted output has multiple dimensions, this is the value in the output located by [output_index][google.cloud.aiplatform.v1.Attribution.output_index].
feature_attributions: Option<Value>
Output only. Attributions of each explained feature. Features are extracted from the [prediction instances][google.cloud.aiplatform.v1.ExplainRequest.instances] according to [explanation metadata for inputs][google.cloud.aiplatform.v1.ExplanationMetadata.inputs].
The value is a struct, whose keys are the name of the feature. The values are how much the feature in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances] contributed to the predicted result.
The format of the value is determined by the feature’s input format:
-
If the feature is a scalar value, the attribution value is a [floating number][google.protobuf.Value.number_value].
-
If the feature is an array of scalar values, the attribution value is an [array][google.protobuf.Value.list_value].
-
If the feature is a struct, the attribution value is a [struct][google.protobuf.Value.struct_value]. The keys in the attribution value struct are the same as the keys in the feature struct. The formats of the values in the attribution struct are determined by the formats of the values in the feature struct.
The [ExplanationMetadata.feature_attributions_schema_uri][google.cloud.aiplatform.v1.ExplanationMetadata.feature_attributions_schema_uri] field, pointed to by the [ExplanationSpec][google.cloud.aiplatform.v1.ExplanationSpec] field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1.Endpoint.deployed_models] object, points to the schema file that describes the features and their attribution values (if it is populated).
output_index: Vec<i32>
Output only. The index that locates the explained prediction output.
If the prediction output is a scalar value, output_index is not populated. If the prediction output has multiple dimensions, the length of the output_index list is the same as the number of dimensions of the output. The i-th element in output_index is the element index of the i-th dimension of the output vector. Indices start from 0.
output_display_name: String
Output only. The display name of the output identified by [output_index][google.cloud.aiplatform.v1.Attribution.output_index]. For example, the predicted class name by a multi-classification Model.
This field is only populated iff the Model predicts display names as a separate field along with the explained output. The predicted display name must has the same shape of the explained output, and can be located using output_index.
approximation_error: f64
Output only. Error of [feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions] caused by approximation used in the explanation method. Lower value means more precise attributions.
- For Sampled Shapley [attribution][google.cloud.aiplatform.v1.ExplanationParameters.sampled_shapley_attribution], increasing [path_count][google.cloud.aiplatform.v1.SampledShapleyAttribution.path_count] might reduce the error.
- For Integrated Gradients [attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution], increasing [step_count][google.cloud.aiplatform.v1.IntegratedGradientsAttribution.step_count] might reduce the error.
- For [XRAI attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution], increasing [step_count][google.cloud.aiplatform.v1.XraiAttribution.step_count] might reduce the error.
See this introduction for more information.
output_name: String
Output only. Name of the explain output. Specified as the key in [ExplanationMetadata.outputs][google.cloud.aiplatform.v1.ExplanationMetadata.outputs].
Trait Implementations§
source§impl Clone for Attribution
impl Clone for Attribution
source§fn clone(&self) -> Attribution
fn clone(&self) -> Attribution
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for Attribution
impl Debug for Attribution
source§impl Default for Attribution
impl Default for Attribution
source§impl Message for Attribution
impl Message for Attribution
source§fn encoded_len(&self) -> usize
fn encoded_len(&self) -> usize
source§fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
fn encode_length_delimited(
&self,
buf: &mut impl BufMut,
) -> Result<(), EncodeError>where
Self: Sized,
source§fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
fn encode_length_delimited_to_vec(&self) -> Vec<u8>where
Self: Sized,
source§fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>where
Self: Default,
source§fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
. Read moresource§fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>where
Self: Sized,
self
.source§impl PartialEq for Attribution
impl PartialEq for Attribution
source§fn eq(&self, other: &Attribution) -> bool
fn eq(&self, other: &Attribution) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for Attribution
Auto Trait Implementations§
impl Freeze for Attribution
impl RefUnwindSafe for Attribution
impl Send for Attribution
impl Sync for Attribution
impl Unpin for Attribution
impl UnwindSafe for Attribution
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request