Enum google_api_proto::google::cloud::aiplatform::v1::input_data_config::Destination
source · pub enum Destination {
GcsDestination(GcsDestination),
BigqueryDestination(BigQueryDestination),
}
Expand description
Only applicable to Custom and Hyperparameter Tuning TrainingPipelines.
The destination of the training data to be written to.
Supported destination file formats:
- For non-tabular data: “jsonl”.
- For tabular data: “csv” and “bigquery”.
The following Vertex AI environment variables are passed to containers or python modules of the training task when this field is set:
- AIP_DATA_FORMAT : Exported data format.
- AIP_TRAINING_DATA_URI : Sharded exported training data uris.
- AIP_VALIDATION_DATA_URI : Sharded exported validation data uris.
- AIP_TEST_DATA_URI : Sharded exported test data uris.
Variants§
GcsDestination(GcsDestination)
The Cloud Storage location where the training data is to be
written to. In the given directory a new directory is created with
name:
dataset-<dataset-id>-<annotation-type>-<timestamp-of-training-call>
where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format.
All training input data is written into that directory.
The Vertex AI environment variables representing Cloud Storage data URIs are represented in the Cloud Storage wildcard format to support sharded data. e.g.: “gs://…/training-*.jsonl”
-
AIP_DATA_FORMAT = “jsonl” for non-tabular data, “csv” for tabular data
-
AIP_TRAINING_DATA_URI = “gcs_destination/dataset-
- - -
AIP_VALIDATION_DATA_URI = “gcs_destination/dataset-
- - -
AIP_TEST_DATA_URI = “gcs_destination/dataset-
- -
BigqueryDestination(BigQueryDestination)
Only applicable to custom training with tabular Dataset with BigQuery source.
The BigQuery project location where the training data is to be written
to. In the given project a new dataset is created with name
dataset_<dataset-id>_<annotation-type>_<timestamp-of-training-call>
where timestamp is in YYYY_MM_DDThh_mm_ss_sssZ format. All training
input data is written into that dataset. In the dataset three
tables are created, training
, validation
and test
.
-
AIP_DATA_FORMAT = “bigquery”.
-
AIP_TRAINING_DATA_URI = “bigquery_destination.dataset_
-
AIP_VALIDATION_DATA_URI = “bigquery_destination.dataset_
-
AIP_TEST_DATA_URI = “bigquery_destination.dataset_
Implementations§
source§impl Destination
impl Destination
sourcepub fn merge(
field: &mut Option<Destination>,
tag: u32,
wire_type: WireType,
buf: &mut impl Buf,
ctx: DecodeContext,
) -> Result<(), DecodeError>
pub fn merge( field: &mut Option<Destination>, tag: u32, wire_type: WireType, buf: &mut impl Buf, ctx: DecodeContext, ) -> Result<(), DecodeError>
Decodes an instance of the message from a buffer, and merges it into self.
sourcepub fn encoded_len(&self) -> usize
pub fn encoded_len(&self) -> usize
Returns the encoded length of the message without a length delimiter.
Trait Implementations§
source§impl Clone for Destination
impl Clone for Destination
source§fn clone(&self) -> Destination
fn clone(&self) -> Destination
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for Destination
impl Debug for Destination
source§impl PartialEq for Destination
impl PartialEq for Destination
source§fn eq(&self, other: &Destination) -> bool
fn eq(&self, other: &Destination) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for Destination
Auto Trait Implementations§
impl Freeze for Destination
impl RefUnwindSafe for Destination
impl Send for Destination
impl Sync for Destination
impl Unpin for Destination
impl UnwindSafe for Destination
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request