1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
// This file is @generated by prost-build.
/// Mapping of BigQuery columns to timestamp, group_id and dimensions.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BigqueryMapping {
/// The column which should be used as the event timestamps. If not specified
/// 'Timestamp' is used by default. The column may have TIMESTAMP or INT64
/// type (the latter is interpreted as microseconds since the Unix epoch).
#[prost(string, tag = "1")]
pub timestamp_column: ::prost::alloc::string::String,
/// The column which should be used as the group ID (grouping events into
/// sessions). If not specified 'GroupId' is used by default, if the input
/// table does not have such a column, random unique group IDs are
/// generated automatically (different group ID per input row).
#[prost(string, tag = "2")]
pub group_id_column: ::prost::alloc::string::String,
/// The list of columns that should be translated to dimensions. If empty,
/// all columns are translated to dimensions. The timestamp and group_id
/// columns should not be listed here again. Columns are expected to have
/// primitive types (STRING, INT64, FLOAT64 or NUMERIC).
#[prost(string, repeated, tag = "3")]
pub dimension_column: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
}
/// A data source consists of multiple [Event][google.cloud.timeseriesinsights.v1.Event] objects stored on
/// Cloud Storage. Each Event should be in JSON format, with one Event
/// per line, also known as JSON Lines format.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DataSource {
/// Data source URI.
///
/// 1) Google Cloud Storage files (JSON) are defined in the following form.
/// `gs://bucket_name/object_name`. For more information on Cloud Storage URIs,
/// please see <https://cloud.google.com/storage/docs/reference-uris.>
#[prost(string, tag = "1")]
pub uri: ::prost::alloc::string::String,
/// For BigQuery inputs defines the columns that should be used for dimensions
/// (including time and group ID).
#[prost(message, optional, tag = "2")]
pub bq_mapping: ::core::option::Option<BigqueryMapping>,
}
/// A collection of data sources sent for processing.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DataSet {
/// The dataset name, which will be used for querying, status and unload
/// requests. This must be unique within a project.
#[prost(string, tag = "1")]
pub name: ::prost::alloc::string::String,
/// [Data dimension names][google.cloud.timeseriesinsights.v1.EventDimension.name] allowed for this `DataSet`.
///
/// If left empty, all dimension names are included. This field works as a
/// filter to avoid regenerating the data.
#[prost(string, repeated, tag = "2")]
pub data_names: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
/// Input data.
#[prost(message, repeated, tag = "3")]
pub data_sources: ::prost::alloc::vec::Vec<DataSource>,
/// Dataset state in the system.
#[prost(enumeration = "data_set::State", tag = "4")]
pub state: i32,
/// Dataset processing status.
#[prost(message, optional, tag = "5")]
pub status: ::core::option::Option<super::super::super::rpc::Status>,
/// Periodically we discard dataset [Event][google.cloud.timeseriesinsights.v1.Event] objects that have
/// timestamps older than 'ttl'. Omitting this field or a zero value means no
/// events are discarded.
#[prost(message, optional, tag = "6")]
pub ttl: ::core::option::Option<::prost_types::Duration>,
}
/// Nested message and enum types in `DataSet`.
pub mod data_set {
/// DataSet state.
#[derive(
Clone,
Copy,
Debug,
PartialEq,
Eq,
Hash,
PartialOrd,
Ord,
::prost::Enumeration
)]
#[repr(i32)]
pub enum State {
/// Unspecified / undefined state.
Unspecified = 0,
/// Dataset is unknown to the system; we have never seen this dataset before
/// or we have seen this dataset but have fully GC-ed it.
Unknown = 1,
/// Dataset processing is pending.
Pending = 2,
/// Dataset is loading.
Loading = 3,
/// Dataset is loaded and can be queried.
Loaded = 4,
/// Dataset is unloading.
Unloading = 5,
/// Dataset is unloaded and is removed from the system.
Unloaded = 6,
/// Dataset processing failed.
Failed = 7,
}
impl State {
/// String value of the enum field names used in the ProtoBuf definition.
///
/// The values are not transformed in any way and thus are considered stable
/// (if the ProtoBuf definition does not change) and safe for programmatic use.
pub fn as_str_name(&self) -> &'static str {
match self {
State::Unspecified => "STATE_UNSPECIFIED",
State::Unknown => "UNKNOWN",
State::Pending => "PENDING",
State::Loading => "LOADING",
State::Loaded => "LOADED",
State::Unloading => "UNLOADING",
State::Unloaded => "UNLOADED",
State::Failed => "FAILED",
}
}
/// Creates an enum from field names used in the ProtoBuf definition.
pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
match value {
"STATE_UNSPECIFIED" => Some(Self::Unspecified),
"UNKNOWN" => Some(Self::Unknown),
"PENDING" => Some(Self::Pending),
"LOADING" => Some(Self::Loading),
"LOADED" => Some(Self::Loaded),
"UNLOADING" => Some(Self::Unloading),
"UNLOADED" => Some(Self::Unloaded),
"FAILED" => Some(Self::Failed),
_ => None,
}
}
}
}
/// Represents an event dimension.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct EventDimension {
/// Dimension name.
///
/// **NOTE**: `EventDimension` names must be composed of alphanumeric
/// characters only, and are case insensitive. Unicode characters are *not*
/// supported. The underscore '_' is also allowed.
#[prost(string, tag = "1")]
pub name: ::prost::alloc::string::String,
/// Dimension value.
///
/// **NOTE**: All entries of the dimension `name` must have the same `value`
/// type.
#[prost(oneof = "event_dimension::Value", tags = "2, 3, 4, 5")]
pub value: ::core::option::Option<event_dimension::Value>,
}
/// Nested message and enum types in `EventDimension`.
pub mod event_dimension {
/// Dimension value.
///
/// **NOTE**: All entries of the dimension `name` must have the same `value`
/// type.
#[derive(Clone, PartialEq, ::prost::Oneof)]
pub enum Value {
/// String representation.
///
/// **NOTE**: String values are case insensitive. Unicode characters are
/// supported.
#[prost(string, tag = "2")]
StringVal(::prost::alloc::string::String),
/// Long representation.
#[prost(int64, tag = "3")]
LongVal(i64),
/// Bool representation.
#[prost(bool, tag = "4")]
BoolVal(bool),
/// Double representation.
#[prost(double, tag = "5")]
DoubleVal(f64),
}
}
/// Represents an entry in a data source.
///
/// Each Event has:
///
/// * A timestamp at which the event occurs.
/// * One or multiple dimensions.
/// * Optionally, a group ID that allows clients to group logically related
/// events (for example, all events representing payments transactions done by
/// a user in a day have the same group ID). If a group ID is not provided, an
/// internal one will be generated based on the content and `eventTime`.
///
/// **NOTE**:
///
/// * Internally, we discretize time in equal-sized chunks and we assume an
/// event has a 0
/// [TimeseriesPoint.value][google.cloud.timeseriesinsights.v1.TimeseriesPoint.value]
/// in a chunk that does not contain any occurrences of an event in the input.
/// * The number of Events with the same group ID should be limited.
/// * Group ID *cannot* be queried.
/// * Group ID does *not* correspond to a user ID or the like. If a user ID is of
/// interest to be queried, use a user ID `dimension` instead.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Event {
/// Event dimensions.
#[prost(message, repeated, tag = "1")]
pub dimensions: ::prost::alloc::vec::Vec<EventDimension>,
/// Event group ID.
///
/// **NOTE**: JSON encoding should use a string to hold a 64-bit integer value,
/// because a native JSON number holds only 53 binary bits for an integer.
#[prost(int64, tag = "2")]
pub group_id: i64,
/// Event timestamp.
#[prost(message, optional, tag = "3")]
pub event_time: ::core::option::Option<::prost_types::Timestamp>,
}
/// Appends events to an existing DataSet.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AppendEventsRequest {
/// Events to be appended.
///
/// Note:
///
/// 0. The [DataSet][google.cloud.timeseriesinsights.v1.DataSet] must be shown in a `LOADED` state
/// in the results of `list` method; otherwise, all events from
/// the append request will be dropped, and a `NOT_FOUND` status will be
/// returned.
/// 0. All events in a single request must have the same
/// [groupId][google.cloud.timeseriesinsights.v1.Event.group_id] if set; otherwise, an
/// `INVALID_ARGUMENT` status will be returned.
/// 0. If [groupId][google.cloud.timeseriesinsights.v1.Event.group_id] is not set (or 0), there
/// should be only 1 event; otherwise, an `INVALID_ARGUMENT` status will be
/// returned.
/// 0. The events must be newer than the current time minus
/// [DataSet TTL][google.cloud.timeseriesinsights.v1.DataSet.ttl] or they will be dropped.
#[prost(message, repeated, tag = "1")]
pub events: ::prost::alloc::vec::Vec<Event>,
/// Required. The DataSet to which we want to append to in the format of
/// "projects/{project}/datasets/{dataset}"
#[prost(string, tag = "2")]
pub dataset: ::prost::alloc::string::String,
}
/// Response for an AppendEvents RPC.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AppendEventsResponse {
/// Dropped events; empty if all events are successfully added.
#[prost(message, repeated, tag = "1")]
pub dropped_events: ::prost::alloc::vec::Vec<Event>,
}
/// Create a DataSet request.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct CreateDataSetRequest {
/// Required. Client project name which will own this DataSet in the format of
/// 'projects/{project}'.
#[prost(string, tag = "1")]
pub parent: ::prost::alloc::string::String,
/// Required. Dataset to be loaded.
#[prost(message, optional, tag = "2")]
pub dataset: ::core::option::Option<DataSet>,
}
/// Unload DataSet request from the serving system.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DeleteDataSetRequest {
/// Required. Dataset name in the format of "projects/{project}/datasets/{dataset}"
#[prost(string, tag = "1")]
pub name: ::prost::alloc::string::String,
}
/// List the DataSets created by the current project.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListDataSetsRequest {
/// Required. Project owning the DataSet in the format of "projects/{project}".
#[prost(string, tag = "1")]
pub parent: ::prost::alloc::string::String,
/// Number of results to return in the list.
#[prost(int32, tag = "2")]
pub page_size: i32,
/// Token to provide to skip to a particular spot in the list.
#[prost(string, tag = "3")]
pub page_token: ::prost::alloc::string::String,
}
/// Created DataSets list response.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListDataSetsResponse {
/// The list of created DataSets.
#[prost(message, repeated, tag = "1")]
pub datasets: ::prost::alloc::vec::Vec<DataSet>,
/// Token to receive the next page of results.
#[prost(string, tag = "2")]
pub next_page_token: ::prost::alloc::string::String,
}
/// A categorical dimension fixed to a certain value.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct PinnedDimension {
/// The name of the dimension for which we are fixing its value.
#[prost(string, tag = "1")]
pub name: ::prost::alloc::string::String,
/// Dimension value.
///
/// **NOTE**: The `value` type must match that in the data with the same
/// `dimension` as name.
#[prost(oneof = "pinned_dimension::Value", tags = "2, 3")]
pub value: ::core::option::Option<pinned_dimension::Value>,
}
/// Nested message and enum types in `PinnedDimension`.
pub mod pinned_dimension {
/// Dimension value.
///
/// **NOTE**: The `value` type must match that in the data with the same
/// `dimension` as name.
#[derive(Clone, PartialEq, ::prost::Oneof)]
pub enum Value {
/// A string value. This can be used for [dimensions][google.cloud.timeseriesinsights.v1.EventDimension], which
/// have their value field set to [string_val][google.cloud.timeseriesinsights.v1.EventDimension.string_val].
#[prost(string, tag = "2")]
StringVal(::prost::alloc::string::String),
/// A bool value. This can be used for [dimensions][google.cloud.timeseriesinsights.v1.EventDimension], which
/// have their value field set to [bool_val][google.cloud.timeseriesinsights.v1.EventDimension.bool_val].
#[prost(bool, tag = "3")]
BoolVal(bool),
}
}
/// Parameters that control the sensitivity and other options for the time series
/// forecast.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct ForecastParams {
/// Optional. Penalize variations between the actual and forecasted values smaller than
/// this. For more information about how this parameter affects the score, see
/// the [anomalyScore](EvaluatedSlice.anomaly_score) formula.
///
/// Intuitively, anomaly scores summarize how statistically significant the
/// change between the actual and forecasted value is compared with what we
/// expect the change to be (see
/// [expectedDeviation](EvaluatedSlice.expected_deviation)). However, in
/// practice, depending on the application, changes smaller than certain
/// absolute values, while statistically significant, may not be important.
///
/// This parameter allows us to penalize such low absolute value changes.
///
/// Must be in the (0.0, inf) range.
///
/// If unspecified, it defaults to 0.000001.
#[prost(double, optional, tag = "12")]
pub noise_threshold: ::core::option::Option<f64>,
/// Optional. Specifying any known seasonality/periodicity in the time series
/// for the slices we will analyze can improve the quality of the results.
///
/// If unsure, simply leave it unspecified by not setting a value for this
/// field.
///
/// If your time series has multiple seasonal patterns, then set it to the most
/// granular one (e.g. if it has daily and weekly patterns, set this to DAILY).
#[prost(enumeration = "forecast_params::Period", tag = "10")]
pub seasonality_hint: i32,
/// Optional. The length of the returned [forecasted
/// timeseries][EvaluatedSlice.forecast].
///
/// This duration is currently capped at 100 x
/// [granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity].
///
/// Example: If the detection point is set to "2020-12-27T00:00:00Z", the
/// [granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity] to "3600s" and the
/// horizon_duration to "10800s", then we will generate 3 time
/// series points (from "2020-12-27T01:00:00Z" to "2020-12-27T04:00:00Z"), for
/// which we will return their forecasted values.
///
/// Note: The horizon time is only used for forecasting not for anormaly
/// detection. To detect anomalies for multiple points of time,
/// simply send multiple queries with those as
/// [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time].
#[prost(message, optional, tag = "13")]
pub horizon_duration: ::core::option::Option<::prost_types::Duration>,
}
/// Nested message and enum types in `ForecastParams`.
pub mod forecast_params {
/// A time period of a fixed interval.
#[derive(
Clone,
Copy,
Debug,
PartialEq,
Eq,
Hash,
PartialOrd,
Ord,
::prost::Enumeration
)]
#[repr(i32)]
pub enum Period {
/// Unknown or simply not given.
Unspecified = 0,
/// 1 hour
Hourly = 5,
/// 24 hours
Daily = 1,
/// 7 days
Weekly = 2,
/// 30 days
Monthly = 3,
/// 365 days
Yearly = 4,
}
impl Period {
/// String value of the enum field names used in the ProtoBuf definition.
///
/// The values are not transformed in any way and thus are considered stable
/// (if the ProtoBuf definition does not change) and safe for programmatic use.
pub fn as_str_name(&self) -> &'static str {
match self {
Period::Unspecified => "PERIOD_UNSPECIFIED",
Period::Hourly => "HOURLY",
Period::Daily => "DAILY",
Period::Weekly => "WEEKLY",
Period::Monthly => "MONTHLY",
Period::Yearly => "YEARLY",
}
}
/// Creates an enum from field names used in the ProtoBuf definition.
pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
match value {
"PERIOD_UNSPECIFIED" => Some(Self::Unspecified),
"HOURLY" => Some(Self::Hourly),
"DAILY" => Some(Self::Daily),
"WEEKLY" => Some(Self::Weekly),
"MONTHLY" => Some(Self::Monthly),
"YEARLY" => Some(Self::Yearly),
_ => None,
}
}
}
}
/// A point in a time series.
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TimeseriesPoint {
/// The timestamp of this point.
#[prost(message, optional, tag = "1")]
pub time: ::core::option::Option<::prost_types::Timestamp>,
/// The value for this point.
///
/// It is computed by aggregating all events in the associated slice that are
/// in the `\[time, time + granularity\]` range (see
/// [granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity]) using the specified
/// [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric].
#[prost(double, optional, tag = "2")]
pub value: ::core::option::Option<f64>,
}
/// A time series.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Timeseries {
/// The points in this time series, ordered by their timestamp.
#[prost(message, repeated, tag = "1")]
pub point: ::prost::alloc::vec::Vec<TimeseriesPoint>,
}
/// Forecast result for a given slice.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct EvaluatedSlice {
/// Values for all categorical dimensions that uniquely identify this slice.
#[prost(message, repeated, tag = "1")]
pub dimensions: ::prost::alloc::vec::Vec<PinnedDimension>,
/// The actual value at the detection time (see
/// [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time]).
///
/// **NOTE**: This value can be an estimate, so it should not be used as a
/// source of truth.
#[prost(double, optional, tag = "11")]
pub detection_point_actual: ::core::option::Option<f64>,
/// The expected value at the detection time, which is obtained by forecasting
/// on the historical time series.
#[prost(double, optional, tag = "12")]
pub detection_point_forecast: ::core::option::Option<f64>,
/// How much our forecast model expects the detection point actual will
/// deviate from its forecasted value based on how well it fit the input time
/// series.
///
/// In general, we expect the `detectionPointActual` to
/// be in the `[detectionPointForecast - expectedDeviation,
/// detectionPointForecast + expectedDeviation]` range. The more the actual
/// value is outside this range, the more statistically significant the
/// anomaly is.
///
/// The expected deviation is always positive.
#[prost(double, optional, tag = "16")]
pub expected_deviation: ::core::option::Option<f64>,
/// Summarizes how significant the change between the actual and forecasted
/// detection points are compared with the historical patterns observed on the
/// [history][google.cloud.timeseriesinsights.v1.EvaluatedSlice.history] time series.
///
/// Defined as *|a - f| / (e + nt)*, where:
///
/// - *a* is the [detectionPointActual][google.cloud.timeseriesinsights.v1.EvaluatedSlice.detection_point_actual].
/// - *f* is the [detectionPointForecast][google.cloud.timeseriesinsights.v1.EvaluatedSlice.detection_point_forecast].
/// - *e* is the [expectedDeviation][google.cloud.timeseriesinsights.v1.EvaluatedSlice.expected_deviation].
/// - *nt` is the [noiseThreshold][google.cloud.timeseriesinsights.v1.ForecastParams.noise_threshold].
///
/// Anomaly scores between different requests and datasets are comparable. As
/// a guideline, the risk of a slice being an anomaly based on the anomaly
/// score is:
///
/// - **Very High** if `anomalyScore` > 5.
/// - **High** if the `anomalyScore` is in the \[2, 5\] range.
/// - **Medium** if the `anomalyScore` is in the [1, 2) range.
/// - **Low** if the `anomalyScore` is < 1.
///
/// If there were issues evaluating this slice, then the anomaly score will be
/// set to -1.0 and the [status][google.cloud.timeseriesinsights.v1.EvaluatedSlice.status] field will contain details on what
/// went wrong.
#[prost(double, optional, tag = "17")]
pub anomaly_score: ::core::option::Option<f64>,
/// The actual values in the `[`
/// [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] `-`
/// [forecastHistory][google.cloud.timeseriesinsights.v1.TimeseriesParams.forecast_history]`,`
/// [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] `]` time
/// range.
///
/// **NOTE**: This field is only populated if
/// [returnTimeseries][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.return_timeseries] is true.
#[prost(message, optional, tag = "5")]
pub history: ::core::option::Option<Timeseries>,
/// The forecasted values in the `[`
/// [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] `+`
/// [granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity]`,`
/// [forecastParams.horizonTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.forecast_params] `]` time
/// range.
///
/// **NOTE**: This field is only populated if
/// [returnTimeseries][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.return_timeseries] is true.
#[prost(message, optional, tag = "10")]
pub forecast: ::core::option::Option<Timeseries>,
/// Evaluation status. Contains an error message if the `anomalyScore` is < 0.
///
/// Possible error messages:
///
/// - **"Time series too sparse"**: The returned time series for this slice did
/// not contain enough data points (we require a minimum of 10).
/// - **"Not enough recent time series points"**: The time series contains the
/// minimum of 10 points, but there are not enough close in time to the
/// detection point.
/// - **"Missing detection point data"**: There were not events to be
/// aggregated within the `\[detectionTime, detectionTime + granularity\]` time
/// interval, so we don't have an actual value with which we can compare our
/// prediction.
/// - **"Data retrieval error"**: We failed to retrieve the time series data
/// for this slice and could not evaluate it successfully. Should be a
/// transient error.
/// - **"Internal server error"**: Internal unexpected error.
#[prost(message, optional, tag = "18")]
pub status: ::core::option::Option<super::super::super::rpc::Status>,
}
/// Parameters that control how we slice the dataset and, optionally, filter
/// slices that have some specific values on some dimensions (pinned dimensions).
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SlicingParams {
/// Required. Dimensions over which we will group the events in slices. The names
/// specified here come from the
/// [EventDimension.name][google.cloud.timeseriesinsights.v1.EventDimension.name] field. At least
/// one dimension name must be specified. All dimension names that do not exist
/// in the queried `DataSet` will be ignored.
///
/// Currently only dimensions that hold string values can be specified here.
#[prost(string, repeated, tag = "1")]
pub dimension_names: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
/// Optional. We will only analyze slices for which
/// [EvaluatedSlice.dimensions][google.cloud.timeseriesinsights.v1.EvaluatedSlice.dimensions] contain all of the
/// following pinned dimensions. A query with a pinned dimension `{ name: "d3"
/// stringVal: "v3" }` will only analyze events which contain the dimension `{
/// name: "d3" stringVal: "v3" }`.
/// The [pinnedDimensions][google.cloud.timeseriesinsights.v1.SlicingParams.pinned_dimensions] and
/// [dimensionNames][google.cloud.timeseriesinsights.v1.SlicingParams.dimension_names] fields can **not**
/// share the same dimension names.
///
/// Example a valid specification:
///
/// ```json
/// {
/// dimensionNames: \["d1", "d2"\],
/// pinnedDimensions: [
/// { name: "d3" stringVal: "v3" },
/// { name: "d4" stringVal: "v4" }
/// ]
/// }
/// ```
///
/// In the previous example we will slice the dataset by dimensions "d1",
/// "d2", "d3" and "d4", but we will only analyze slices for which "d3=v3" and
/// "d4=v4".
///
/// The following example is **invalid** as "d2" is present in both
/// dimensionNames and pinnedDimensions:
///
/// ```json
/// {
/// dimensionNames: \["d1", "d2"\],
/// pinnedDimensions: [
/// { name: "d2" stringVal: "v2" },
/// { name: "d4" stringVal: "v4" }
/// ]
/// }
/// ```
#[prost(message, repeated, tag = "2")]
pub pinned_dimensions: ::prost::alloc::vec::Vec<PinnedDimension>,
}
/// Parameters that control how we construct the time series for each slice.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TimeseriesParams {
/// Required. How long should we go in the past when fetching the timeline used for
/// forecasting each slice.
///
/// This is used in combination with the
/// [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] parameter.
/// The time series we construct will have the following time range:
/// `\[detectionTime - forecastHistory, detectionTime + granularity\]`.
///
/// The forecast history might be rounded up, so that a multiple of
/// `granularity` is used to process the query.
///
/// Note: If there are not enough events in the
/// `\[detectionTime - forecastHistory, detectionTime + granularity\]` time
/// interval, the slice evaluation can fail. For more information, see
/// [EvaluatedSlice.status][google.cloud.timeseriesinsights.v1.EvaluatedSlice.status].
#[prost(message, optional, tag = "1")]
pub forecast_history: ::core::option::Option<::prost_types::Duration>,
/// Required. The time granularity of the time series (on the x-axis). Each time series
/// point starting at time T will aggregate all events for a particular slice
/// in *[T, T + granularity)* time windows.
///
/// Note: The aggregation is decided based on the
/// [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] parameter.
///
/// This granularity defines the query-time aggregation windows and is not
/// necessarily related to any event time granularity in the raw data (though
/// we do recommend that the query-time granularity is not finer than the
/// ingestion-time one).
///
/// Currently, the minimal supported granularity is 10 seconds.
#[prost(message, optional, tag = "2")]
pub granularity: ::core::option::Option<::prost_types::Duration>,
/// Optional. Denotes the [name][google.cloud.timeseriesinsights.v1.EventDimension.name] of a numerical
/// dimension that will have its values aggregated to compute the y-axis of the
/// time series.
///
/// The aggregation method must also be specified by setting the
/// [metricAggregationMethod][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric_aggregation_method]
/// field.
///
/// Note: Currently, if the aggregation method is unspecified, we will
/// default to SUM for backward compatibility reasons, but new implementations
/// should set the
/// [metricAggregationMethod][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric_aggregation_method]
/// explicitly.
///
/// If the metric is unspecified, we will use the number of events that each
/// time series point contains as the point value.
///
/// Example: Let's assume we have the following three events in our dataset:
/// ```json
/// {
/// eventTime: "2020-12-27T00:00:00Z",
/// dimensions: [
/// { name: "d1" stringVal: "v1" },
/// { name: "d2" stringVal: "v2" }
/// { name: "m1" longVal: 100 }
/// { name: "m2" longVal: 11 }
/// ]
/// },
/// {
/// eventTime: "2020-12-27T00:10:00Z",
/// dimensions: [
/// { name: "d1" stringVal: "v1" },
/// { name: "d2" stringVal: "v2" }
/// { name: "m1" longVal: 200 }
/// { name: "m2" longVal: 22 }
/// ]
/// },
/// {
/// eventTime: "2020-12-27T00:20:00Z",
/// dimensions: [
/// { name: "d1" stringVal: "v1" },
/// { name: "d2" stringVal: "v2" }
/// { name: "m1" longVal: 300 }
/// { name: "m2" longVal: 33 }
/// ]
/// }
/// ```
///
/// These events are all within the same hour, spaced 10 minutes between each
/// of them. Assuming our [QueryDataSetRequest][google.cloud.timeseriesinsights.v1.QueryDataSetRequest] had set
/// [slicingParams.dimensionNames][google.cloud.timeseriesinsights.v1.SlicingParams.dimension_names] to ["d1",
/// "d2"] and [timeseries_params.granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity] to
/// "3600s", then all the previous events will be aggregated into the same
/// [timeseries point][google.cloud.timeseriesinsights.v1.TimeseriesPoint].
///
/// The time series point that they're all part of will have the
/// [time][google.cloud.timeseriesinsights.v1.TimeseriesPoint.time] set to "2020-12-27T00:00:00Z" and the
/// [value][google.cloud.timeseriesinsights.v1.TimeseriesPoint.value] populated based on this metric field:
///
/// - If the metric is set to "m1" and metric_aggregation_method to SUM, then
/// the value of the point will be 600.
/// - If the metric is set to "m2" and metric_aggregation_method to SUM, then
/// the value of the point will be 66.
/// - If the metric is set to "m1" and metric_aggregation_method to AVERAGE,
/// then the value of the point will be 200.
/// - If the metric is set to "m2" and metric_aggregation_method to AVERAGE,
/// then the value of the point will be 22.
/// - If the metric field is "" or unspecified, then the value of the point
/// will be 3, as we will simply count the events.
#[prost(string, optional, tag = "4")]
pub metric: ::core::option::Option<::prost::alloc::string::String>,
/// Optional. Together with the [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] field, specifies how
/// we will aggregate multiple events to obtain the value of a time series
/// point. See the [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] documentation for more
/// details.
///
/// If the metric is not specified or "", then this field will be ignored.
#[prost(enumeration = "timeseries_params::AggregationMethod", tag = "5")]
pub metric_aggregation_method: i32,
}
/// Nested message and enum types in `TimeseriesParams`.
pub mod timeseries_params {
/// Methods by which we can aggregate multiple events by a given
/// [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric].
#[derive(
Clone,
Copy,
Debug,
PartialEq,
Eq,
Hash,
PartialOrd,
Ord,
::prost::Enumeration
)]
#[repr(i32)]
pub enum AggregationMethod {
/// Unspecified.
Unspecified = 0,
/// Aggregate multiple events by summing up the values found in the
/// [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] dimension.
Sum = 1,
/// Aggregate multiple events by averaging out the values found in the
/// [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] dimension.
Average = 2,
}
impl AggregationMethod {
/// String value of the enum field names used in the ProtoBuf definition.
///
/// The values are not transformed in any way and thus are considered stable
/// (if the ProtoBuf definition does not change) and safe for programmatic use.
pub fn as_str_name(&self) -> &'static str {
match self {
AggregationMethod::Unspecified => "AGGREGATION_METHOD_UNSPECIFIED",
AggregationMethod::Sum => "SUM",
AggregationMethod::Average => "AVERAGE",
}
}
/// Creates an enum from field names used in the ProtoBuf definition.
pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
match value {
"AGGREGATION_METHOD_UNSPECIFIED" => Some(Self::Unspecified),
"SUM" => Some(Self::Sum),
"AVERAGE" => Some(Self::Average),
_ => None,
}
}
}
}
/// Request for performing a query against a loaded DataSet.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct QueryDataSetRequest {
/// Required. Loaded DataSet to be queried in the format of
/// "projects/{project}/datasets/{dataset}"
#[prost(string, tag = "1")]
pub name: ::prost::alloc::string::String,
/// Required. This is the point in time that we want to probe for anomalies.
///
/// The corresponding [TimeseriesPoint][google.cloud.timeseriesinsights.v1.TimeseriesPoint] is referred to as the
/// detection point.
///
/// **NOTE**: As with any other time series point, the value is given by
/// aggregating all events in the slice that are in the
/// [detectionTime, detectionTime + granularity) time interval, where
/// the granularity is specified in the
/// [timeseriesParams.granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity] field.
#[prost(message, optional, tag = "11")]
pub detection_time: ::core::option::Option<::prost_types::Timestamp>,
/// How many slices are returned in
/// [QueryDataSetResponse.slices][google.cloud.timeseriesinsights.v1.QueryDataSetResponse.slices].
///
/// The returned slices are tentatively the ones with the highest
/// [anomaly scores][google.cloud.timeseriesinsights.v1.EvaluatedSlice.anomaly_score] in the dataset that match
/// the query, but it is not guaranteed.
///
/// Reducing this number will improve query performance, both in terms of
/// latency and resource usage.
///
/// Defaults to 50.
#[prost(int32, optional, tag = "13")]
pub num_returned_slices: ::core::option::Option<i32>,
/// Parameters controlling how we will split the dataset into the slices that
/// we will analyze.
#[prost(message, optional, tag = "9")]
pub slicing_params: ::core::option::Option<SlicingParams>,
/// Parameters controlling how we will build the time series used to predict
/// the [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] value for each slice.
#[prost(message, optional, tag = "10")]
pub timeseries_params: ::core::option::Option<TimeseriesParams>,
/// Parameters that control the time series forecasting models, such as the
/// sensitivity of the anomaly detection.
#[prost(message, optional, tag = "5")]
pub forecast_params: ::core::option::Option<ForecastParams>,
/// If specified, we will return the actual and forecasted time for all
/// returned slices.
///
/// The time series are returned in the
/// [EvaluatedSlice.history][google.cloud.timeseriesinsights.v1.EvaluatedSlice.history] and
/// [EvaluatedSlice.forecast][google.cloud.timeseriesinsights.v1.EvaluatedSlice.forecast] fields.
#[prost(bool, tag = "8")]
pub return_timeseries: bool,
}
/// Response for a query executed by the system.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct QueryDataSetResponse {
/// Loaded DataSet that was queried.
#[prost(string, tag = "1")]
pub name: ::prost::alloc::string::String,
/// Slices sorted in descending order by their
/// [anomalyScore][google.cloud.timeseriesinsights.v1.EvaluatedSlice.anomaly_score].
///
/// At most [numReturnedSlices][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.num_returned_slices]
/// slices are present in this field.
#[prost(message, repeated, tag = "3")]
pub slices: ::prost::alloc::vec::Vec<EvaluatedSlice>,
}
/// Request for evaluateSlice.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct EvaluateSliceRequest {
/// Required. Loaded DataSet to be queried in the format of
/// "projects/{project}/datasets/{dataset}"
#[prost(string, tag = "1")]
pub dataset: ::prost::alloc::string::String,
/// Required. Dimensions with pinned values that specify the slice for which we will
/// fetch the time series.
#[prost(message, repeated, tag = "2")]
pub pinned_dimensions: ::prost::alloc::vec::Vec<PinnedDimension>,
/// Required. This is the point in time that we want to probe for anomalies.
///
/// See documentation for
/// [QueryDataSetRequest.detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time].
#[prost(message, optional, tag = "3")]
pub detection_time: ::core::option::Option<::prost_types::Timestamp>,
/// Parameters controlling how we will build the time series used to predict
/// the [detectionTime][google.cloud.timeseriesinsights.v1.EvaluateSliceRequest.detection_time] value for this slice.
#[prost(message, optional, tag = "4")]
pub timeseries_params: ::core::option::Option<TimeseriesParams>,
/// Parameters that control the time series forecasting models, such as the
/// sensitivity of the anomaly detection.
#[prost(message, optional, tag = "5")]
pub forecast_params: ::core::option::Option<ForecastParams>,
}
/// Request for evaluateTimeseries.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct EvaluateTimeseriesRequest {
/// Required. Client project name in the format of 'projects/{project}'.
#[prost(string, tag = "1")]
pub parent: ::prost::alloc::string::String,
/// Evaluate this time series without requiring it was previously loaded in
/// a data set.
///
/// The evaluated time series point is the last one, analogous to calling
/// evaluateSlice or query with
/// [detectionTime][google.cloud.timeseriesinsights.v1.EvaluateSliceRequest.detection_time] set to
/// `timeseries.point(timeseries.point_size() - 1).time`.
///
/// The length of the time series must be at least 10.
///
/// All points must have the same time offset relative to the granularity. For
/// example, if the [granularity][google.cloud.timeseriesinsights.v1.EvaluateTimeseriesRequest.granularity] is "5s", then the following
/// point.time sequences are valid:
/// - "100s", "105s", "120s", "125s" (no offset)
/// - "102s", "107s", "122s", "127s" (offset is "2s")
/// However, the following sequence is invalid as it has inconsistent offsets:
/// - "100s", "105s", "122s", "127s" (offsets are either "0s" or "2s")
#[prost(message, optional, tag = "2")]
pub timeseries: ::core::option::Option<Timeseries>,
/// The granularity of the time series (time distance between two consecutive
/// points).
#[prost(message, optional, tag = "3")]
pub granularity: ::core::option::Option<::prost_types::Duration>,
/// The forecast parameters.
#[prost(message, optional, tag = "4")]
pub forecast_params: ::core::option::Option<ForecastParams>,
}
/// Generated client implementations.
pub mod timeseries_insights_controller_client {
#![allow(unused_variables, dead_code, missing_docs, clippy::let_unit_value)]
use tonic::codegen::*;
use tonic::codegen::http::Uri;
#[derive(Debug, Clone)]
pub struct TimeseriesInsightsControllerClient<T> {
inner: tonic::client::Grpc<T>,
}
impl<T> TimeseriesInsightsControllerClient<T>
where
T: tonic::client::GrpcService<tonic::body::BoxBody>,
T::Error: Into<StdError>,
T::ResponseBody: Body<Data = Bytes> + std::marker::Send + 'static,
<T::ResponseBody as Body>::Error: Into<StdError> + std::marker::Send,
{
pub fn new(inner: T) -> Self {
let inner = tonic::client::Grpc::new(inner);
Self { inner }
}
pub fn with_origin(inner: T, origin: Uri) -> Self {
let inner = tonic::client::Grpc::with_origin(inner, origin);
Self { inner }
}
pub fn with_interceptor<F>(
inner: T,
interceptor: F,
) -> TimeseriesInsightsControllerClient<InterceptedService<T, F>>
where
F: tonic::service::Interceptor,
T::ResponseBody: Default,
T: tonic::codegen::Service<
http::Request<tonic::body::BoxBody>,
Response = http::Response<
<T as tonic::client::GrpcService<tonic::body::BoxBody>>::ResponseBody,
>,
>,
<T as tonic::codegen::Service<
http::Request<tonic::body::BoxBody>,
>>::Error: Into<StdError> + std::marker::Send + std::marker::Sync,
{
TimeseriesInsightsControllerClient::new(
InterceptedService::new(inner, interceptor),
)
}
/// Compress requests with the given encoding.
///
/// This requires the server to support it otherwise it might respond with an
/// error.
#[must_use]
pub fn send_compressed(mut self, encoding: CompressionEncoding) -> Self {
self.inner = self.inner.send_compressed(encoding);
self
}
/// Enable decompressing responses.
#[must_use]
pub fn accept_compressed(mut self, encoding: CompressionEncoding) -> Self {
self.inner = self.inner.accept_compressed(encoding);
self
}
/// Limits the maximum size of a decoded message.
///
/// Default: `4MB`
#[must_use]
pub fn max_decoding_message_size(mut self, limit: usize) -> Self {
self.inner = self.inner.max_decoding_message_size(limit);
self
}
/// Limits the maximum size of an encoded message.
///
/// Default: `usize::MAX`
#[must_use]
pub fn max_encoding_message_size(mut self, limit: usize) -> Self {
self.inner = self.inner.max_encoding_message_size(limit);
self
}
/// Lists [DataSets][google.cloud.timeseriesinsights.v1.DataSet] under the project.
///
/// The order of the results is unspecified but deterministic. Newly created
/// [DataSets][google.cloud.timeseriesinsights.v1.DataSet] will not necessarily be added to the end
/// of this list.
pub async fn list_data_sets(
&mut self,
request: impl tonic::IntoRequest<super::ListDataSetsRequest>,
) -> std::result::Result<
tonic::Response<super::ListDataSetsResponse>,
tonic::Status,
> {
self.inner
.ready()
.await
.map_err(|e| {
tonic::Status::new(
tonic::Code::Unknown,
format!("Service was not ready: {}", e.into()),
)
})?;
let codec = tonic::codec::ProstCodec::default();
let path = http::uri::PathAndQuery::from_static(
"/google.cloud.timeseriesinsights.v1.TimeseriesInsightsController/ListDataSets",
);
let mut req = request.into_request();
req.extensions_mut()
.insert(
GrpcMethod::new(
"google.cloud.timeseriesinsights.v1.TimeseriesInsightsController",
"ListDataSets",
),
);
self.inner.unary(req, path, codec).await
}
/// Create a [DataSet][google.cloud.timeseriesinsights.v1.DataSet] from data stored on Cloud
/// Storage.
///
/// The data must stay immutable while we process the
/// [DataSet][google.cloud.timeseriesinsights.v1.DataSet] creation; otherwise, undefined outcomes
/// might result. For more information, see [DataSet][google.cloud.timeseriesinsights.v1.DataSet].
pub async fn create_data_set(
&mut self,
request: impl tonic::IntoRequest<super::CreateDataSetRequest>,
) -> std::result::Result<tonic::Response<super::DataSet>, tonic::Status> {
self.inner
.ready()
.await
.map_err(|e| {
tonic::Status::new(
tonic::Code::Unknown,
format!("Service was not ready: {}", e.into()),
)
})?;
let codec = tonic::codec::ProstCodec::default();
let path = http::uri::PathAndQuery::from_static(
"/google.cloud.timeseriesinsights.v1.TimeseriesInsightsController/CreateDataSet",
);
let mut req = request.into_request();
req.extensions_mut()
.insert(
GrpcMethod::new(
"google.cloud.timeseriesinsights.v1.TimeseriesInsightsController",
"CreateDataSet",
),
);
self.inner.unary(req, path, codec).await
}
/// Delete a [DataSet][google.cloud.timeseriesinsights.v1.DataSet] from the system.
///
/// **NOTE**: If the [DataSet][google.cloud.timeseriesinsights.v1.DataSet] is still being
/// processed, it will be aborted and deleted.
pub async fn delete_data_set(
&mut self,
request: impl tonic::IntoRequest<super::DeleteDataSetRequest>,
) -> std::result::Result<tonic::Response<()>, tonic::Status> {
self.inner
.ready()
.await
.map_err(|e| {
tonic::Status::new(
tonic::Code::Unknown,
format!("Service was not ready: {}", e.into()),
)
})?;
let codec = tonic::codec::ProstCodec::default();
let path = http::uri::PathAndQuery::from_static(
"/google.cloud.timeseriesinsights.v1.TimeseriesInsightsController/DeleteDataSet",
);
let mut req = request.into_request();
req.extensions_mut()
.insert(
GrpcMethod::new(
"google.cloud.timeseriesinsights.v1.TimeseriesInsightsController",
"DeleteDataSet",
),
);
self.inner.unary(req, path, codec).await
}
/// Append events to a `LOADED` [DataSet][google.cloud.timeseriesinsights.v1.DataSet].
pub async fn append_events(
&mut self,
request: impl tonic::IntoRequest<super::AppendEventsRequest>,
) -> std::result::Result<
tonic::Response<super::AppendEventsResponse>,
tonic::Status,
> {
self.inner
.ready()
.await
.map_err(|e| {
tonic::Status::new(
tonic::Code::Unknown,
format!("Service was not ready: {}", e.into()),
)
})?;
let codec = tonic::codec::ProstCodec::default();
let path = http::uri::PathAndQuery::from_static(
"/google.cloud.timeseriesinsights.v1.TimeseriesInsightsController/AppendEvents",
);
let mut req = request.into_request();
req.extensions_mut()
.insert(
GrpcMethod::new(
"google.cloud.timeseriesinsights.v1.TimeseriesInsightsController",
"AppendEvents",
),
);
self.inner.unary(req, path, codec).await
}
/// Execute a Timeseries Insights query over a loaded
/// [DataSet][google.cloud.timeseriesinsights.v1.DataSet].
pub async fn query_data_set(
&mut self,
request: impl tonic::IntoRequest<super::QueryDataSetRequest>,
) -> std::result::Result<
tonic::Response<super::QueryDataSetResponse>,
tonic::Status,
> {
self.inner
.ready()
.await
.map_err(|e| {
tonic::Status::new(
tonic::Code::Unknown,
format!("Service was not ready: {}", e.into()),
)
})?;
let codec = tonic::codec::ProstCodec::default();
let path = http::uri::PathAndQuery::from_static(
"/google.cloud.timeseriesinsights.v1.TimeseriesInsightsController/QueryDataSet",
);
let mut req = request.into_request();
req.extensions_mut()
.insert(
GrpcMethod::new(
"google.cloud.timeseriesinsights.v1.TimeseriesInsightsController",
"QueryDataSet",
),
);
self.inner.unary(req, path, codec).await
}
/// Evaluate an explicit slice from a loaded [DataSet][google.cloud.timeseriesinsights.v1.DataSet].
pub async fn evaluate_slice(
&mut self,
request: impl tonic::IntoRequest<super::EvaluateSliceRequest>,
) -> std::result::Result<tonic::Response<super::EvaluatedSlice>, tonic::Status> {
self.inner
.ready()
.await
.map_err(|e| {
tonic::Status::new(
tonic::Code::Unknown,
format!("Service was not ready: {}", e.into()),
)
})?;
let codec = tonic::codec::ProstCodec::default();
let path = http::uri::PathAndQuery::from_static(
"/google.cloud.timeseriesinsights.v1.TimeseriesInsightsController/EvaluateSlice",
);
let mut req = request.into_request();
req.extensions_mut()
.insert(
GrpcMethod::new(
"google.cloud.timeseriesinsights.v1.TimeseriesInsightsController",
"EvaluateSlice",
),
);
self.inner.unary(req, path, codec).await
}
/// Evaluate an explicit timeseries.
pub async fn evaluate_timeseries(
&mut self,
request: impl tonic::IntoRequest<super::EvaluateTimeseriesRequest>,
) -> std::result::Result<tonic::Response<super::EvaluatedSlice>, tonic::Status> {
self.inner
.ready()
.await
.map_err(|e| {
tonic::Status::new(
tonic::Code::Unknown,
format!("Service was not ready: {}", e.into()),
)
})?;
let codec = tonic::codec::ProstCodec::default();
let path = http::uri::PathAndQuery::from_static(
"/google.cloud.timeseriesinsights.v1.TimeseriesInsightsController/EvaluateTimeseries",
);
let mut req = request.into_request();
req.extensions_mut()
.insert(
GrpcMethod::new(
"google.cloud.timeseriesinsights.v1.TimeseriesInsightsController",
"EvaluateTimeseries",
),
);
self.inner.unary(req, path, codec).await
}
}
}